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Abstract A family of studies investigating the impact of program identifier style on
human comprehension is presented. Two popular identifier styles are examined,
namely camel case and underscore. The underlying hypothesis is that identifier
style affects the speed and accuracy of comprehending source code. To investigate
this hypothesis, five studies were designed and conducted. The first study, which
investigates how well humans read identifiers in the two different styles, focuses on
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low-level readability issues. The remaining four studies build on the first to focus on
the semantic implications of identifier style. The studies involve 150 participants with
varied demographics from two different universities. A range of experimental meth-
ods is used in the studies including timed testing, read aloud, and eye tracking. These
methods produce a broad set of measurements and appropriate statistical methods,
such as regression models and Generalized Linear Mixed Models (GLMMs), are
applied to analyze the results. While unexpected, the results demonstrate that the
tasks of reading and comprehending source code is fundamentally different from
those of reading and comprehending natural language. Furthermore, as the task be-
comes similar to reading prose, the results become similar to work on reading natural
language text. For more “source focused” tasks, experienced software developers
appear to be less affected by identifier style; however, beginners benefit from the use
of camel casing with respect to accuracy and effort.

Keywords Program comprehension · Text recognition · Coding standards ·
Identifier names · Memory · Identifier styles · Eye-tracking study · Code readability

1 Introduction

Program identifier names are at the core of program comprehension. They embody
the connection between source code and problem domain. Identifiers have been
described as key beacons to program plans that support higher-level mental models of
understanding (Brooks 1983; Soloway and Ehrlich 1984). Identifiers are particularly
useful in a wide range of software engineering tasks (Anquetil and Lethbridge 1998;
Ohba and Gondow 2005) and especially in the comprehension of programs (Lawrie
et al. 2006, 2007; Liblit et al. 2006; Takang et al. 1996). According to Deißenböck and
Pizka (2005), identifiers represent the bulk of program text and typically make up
approximately 70 percent of source code.

Modern programming languages allow programmers considerable syntactic free-
dom in the naming of identifiers. Anarchistic use of this freedom interferes with
source-code understanding, especially when trying to comprehend code written
by other programmers. Several styles exist for engineering more consistent iden-
tifiers (Deißenböck and Pizka 2005; Caprile and Tonella 2000; Simonyi 1999);
however, scant empirical work has considered their effect on programmers and
program comprehension. Because longer names, with more embedded sub-words,
are more informative (Liblit et al. 2006), one important feature that these styles
share is a means to combine words into a single syntactically-correct identifier. The
two dominant identifier styles are camel case (e.g., employeeName) and underscore
(e.g., employee_name).

Many early programming languages, such as Ada, Basic, COBOL, Fortran, and
Pascal, are case insensitive. Programmers were encouraged, due to convention and
practicality, to use underscores to separate compound identifier names. With the
popularization of case-sensitive languages such as C, C++, Java, and Python, the
trend has been toward the use of camel-case style identifiers. While the general trend
has been a greater preponderance of camel casing, there is little hard data on the
amount of code written or being written in either style. Many programmers have a
strong personal opinion as to which style is better; however, an empirical study is a
more appropriate and scientific basis for supporting the use of either. The central
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hypothesis considered herein is that identifier style affects the speed and accuracy of
reading and comprehending source code.

If a particular style (e.g., the use of camel case or underscores) significantly
increases the speed of code comprehension, use of this style would have a tremen-
dous impact on program understanding, quality, and cost. Research in cognitive
psychology on natural language suggests that the use of underscores should increase
readability and hence improve comprehension, while camel casing should increase
reading difficulty. For example, a study by Epelboim et al. (1997) considered the
effect of the type of inter-word filler on word recognition. They found that removing
spaces or replacing spaces with Latin letters, Greek letters, or digits had a negative
impact on reading. However, shaded boxes had essentially no effect on reading. A
shaded box depicts a space similar to an underscore.

Assuming that increased readability leads to increased comprehension, under-
scores should be preferred over camel casing. However, given that camel casing
is currently favored by much of the programming community, perhaps something
with regards to source code differs from natural language reading. Alternatively,
perhaps programmers can be trained to overcome the reading difficulty and perform
appropriately with either style. To properly investigate this issue and answer these
questions requires empirical study.

While readability is a lower-level concern, an important goal of this work is to
provide a solid foundation for answering more complex questions related to program
comprehension. Without fundamental results on the effect of identifier style, future
comprehension studies are difficult to interpret and compare because the impact
of the underlying code readability is unknown. If reading source code and reading
natural language are substantially the same undertakings, then a significant body of
foundational research on natural language can be used as a basis for program com-
prehension studies. However, if reading source code and reading natural language
are significantly different undertakings, then a new body of foundational research
is needed as a basis for program comprehension studies. The need for similar
foundational empirical evidence has been observed, for example, when applying
topic modeling techniques developed for natural language to source code (Grant
and Cordy 2010).

To provide such a foundation, this article describes five studies that leverage
past work in cognitive psychology, on how humans read and comprehend natural
language prose, and apply it to typical source-code comprehension activities. The fol-
lowing overview of these studies is designed to show how the five studies interrelate
and build upon one another. In all five, the key response variable being investigated
is the impact of Style, camel case and underscore, on different measures of subject
performance. The following description of each study provides the reader with a road
map of the progression of, and connections between, the five studies.

Cloud The progression of studies begins in Section 4 with two low-level
readability investigations: the Applet-cloud and Tracker-cloud ex-
periments. Both ask subjects to find an identifier from among a set
of distractors. The identifiers are presented isolated, in moving or
static clouds (thus the name of the study).
This simple setting helps to isolate Style’s impact on low-level
readability. It also provides a basis for the other studies.
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Where’s Waldo Moving from reading isolated identifiers to reading in context, the
next study, presented in Section 5, asks subjects to search a code
fragment for all occurrences of a particular identifier. One step
“above” simple identifier reading, this study investigates whether
style has a impact on time or accuracy when examining a snippet
of code.

SAT The third study, presented in Section 6, also considers reading
in context, but this time in the context of a natural-language
paragraph, where the paragraph is modified to incorporate one
of the two styles. Rather than the simple searching of the Where’s
Waldo study, subject understanding is measured using SAT-style
comprehension questions. This study aims to examine the differ-
ences between general reading comprehension with those that
are specific to reading source code. It also provides a bridge
connecting studies from cognitive psychology.

Tracker-code The penultimate study, described in Section 7, mirrors the Where’s
Waldo study by again using snippets of source code. However,
subjects are asked to read and comprehend a larger more stand-
alone code snippet that includes identifiers in both styles. They
are then asked to identify the identifiers seen in the code. The
study uses eye gaze behavior gathered by an eye tracker to uncover
differences in visual effort during code comprehension. It also
considers Style’s impact on retention.

Read-aloud The final study, presented in Section 8, asks subjects to study a
function and then verbally produce a high-level summary of the
code. This study builds on the prior studies, which investigate
aspects of readability, to consider the impact of readability on
comprehension. The final study goes one step further by asking
participants to summarize code, which is expected to indicate their
level of comprehension. The goal of this study is to determine the
effect of identifier style within a typical code comprehension task
such as code summarization.

The remainder of the paper is organized as follows. Background material is
presented in Section 2, including an overview of the participants. The two research
questions and hypotheses are then presented in Section 3. The studies are presented
in Sections 4 through 8. Section 9 discusses the threats to validity and is followed by
related work in Section 10. A summary discussion of the results in the context of the
two research questions is presented in Section 11, and final conclusions are drawn in
Section 12.

2 Background

This section provides background material in support of the empirical studies.
Current theories of reading prose are covered first followed by an overview of
eye-tracking technology. Next, the makeup and demographics of the participants is
discussed. Lastly, the statistical techniques used for analyzing the empirical data are
introduced.
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2.1 Reading Prose

Current theories about the eye movements while humans read, assert that reading
saccades (i.e., the quick movements of the eye between fixations when one is reading)
are based primarily on information about the length of the upcoming word. This
information is determined by low-level visual processes that detect spaces to the right
(for English) of fixation points (Epelboim et al. 1997).

Epelboim et al. considered the impact of different inter-word fillers on word
recognition (Epelboim et al. 1997). Fillers cause lateral distraction and are shown
to have a detrimental effect on reading speed. Epelboim et al. were motivated by
an earlier study by Bouma that showed how letters presented some distance away
from a fixation point took longer to recognize when they were flanked by other
letters (Bouma 1970). This effect was stronger when the flanking letters shared
features with the target letter. The study compared reading using four fillers and
seven filler placements within English prose. The three more relevant combinations
are normal (e.g., “sponge bob”), un-spaced (e.g., “spongebob”), and shaded-box
filled (e.g., “sponge�bob)”.

From a visual perspective, the un-spaced text is similar to camel casing except that
camel casing is expected to be easier to read because of the added clues provided
by capitalization. The use of a shaded box is most similar to the use of underscores
where, again, underscores might be expected to be easier to read because they are
more similar to spaces. Overall, Epelboim et al. found that shaded boxes did not have
an impact on word recognition time (p > 0.3) while all other fillers did (p < 0.05).
In addition, the impact on reading speed was more dramatic for more difficult text.

This observation combined with the differences between un-spaced and camel
casing and the difference between shaded-box and underscores, suggests the repli-
cation of the Epelboim work with a focus on the limited variety of prose seen by
programmers. For example, viewed simply as a reading task, reading code can be
considered easier than reading a similar length paragraph because of the multitude
of visual markers (e.g., { and }) and considerable white space. The first experiment is
based on this observation.

Additionally, a study conducted by New et al. (New et al. 2006) used information
from the English Lexicon Project. It showed that longer words required significantly
more time for subjects to determine their validity as actual words (greater lexical
decision time) than shorter words. One possible explanation for this phenomenon
is that longer words require more fixations (landings of the eye) before they can be
recognized and correctly classified. This greater number of fixations slows reading
and thus negatively impacts comprehension.

2.2 Eye Tracking

The motivation for using an eye tracker is that visual attention (focus on a particular
location) triggers mental processes to comprehend or solve a given task (Just and
Carpenter 1980). Thus, visual attention provides a proxy for cognitive effort as the
eye tracker captures quantitative data related to location and duration of a human
subject’s visual effort. Visual effort is measured as the amount of visual attention
devoted to a particular area of the screen.
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A Tobii 1750 eye tracker (www.tobii.com) was used in two of the experiments
(Tracker-cloud and Tracker-code). It is a video-based remote eye tracker that uses
two cameras to capture eye movements. The cameras are built into a 17 inch TFT-
LCD display with a screen resolution of 1024 by 768. This eye tracker does not
require the subject to wear any form of head gear, which emulates a subject’s
normal work environment. The frame rate (temporal resolution) at which sampling
occurs is 50 Hz, latency is around 25–35 ms, and average accuracy is 0.5 degrees
(approximately 15 pixels). The eye tracker compensates for head movement during
the study (i.e., the eyes do not have to be focused on the screen all the time). The
ClearView analysis software that comes with the eye tracker was configured using a
dual monitor extended desktop setting.

The first monitor is used by the moderator to set up and initiate the study. The
moderator gets real-time feedback of eye-tracking quality on the first monitor during
the study. The second monitor is used by the study subjects to perform the tasks. The
Tobii eye tracker records eye-gaze and audio/video recordings of the entire study
session from the second monitor.

The two main types of eye-gaze data are eye f ixations and saccades obtained from
the eye-tracker’s raw data, which includes a time stamp, x and y gaze coordinates, and
any error codes. Unlike a short saccade, a fixation is the stabilization of the eye on
an object of interest for a period of time. It has been determined that comprehension
mainly takes place during fixations and not during saccades (Duchowski 2007). The
eye tracker was set to filter fixations within 20 pixels with a duration of at least 40
ms, the standard setting recommended by Tobii for reading tasks. Small font sizes for
the eye-tracking studies were avoided because they can lead to inaccurate fixations
and saccades due to tracking errors. The font sizes in the studies were determined
experimentally in trial runs with two test subjects to be large enough (11-point
Courier New) to avoid inaccuracies.

2.3 Participants

The five studies presented in this paper involve three groups of participants out-
lined in Table 1. The first group includes 135 students from Loyola University
Maryland and includes both programmers and non-programmers. Non-programmers
were included to gain insight into the impact of prior programming exposure. The
programmers in this group were mostly trained in the camel case style. (For clarity,
term “programmer” is used herein to refer to “one who programs”, while the
term “developer” is used to refer to a programmer who is a professional software
developer.) The Age (variables used in the experiments are set in sans serif font)
of the subjects ranged from 17 to 22. Overall, participants were 54% male while
the programmers were 67% male. After their participation, participants were asked
if they had a preference for one style over the other (i.e., felt more comfortable

Table 1 Summary of subject
groups

Group University Size

Group 1 Loyola 135
Group 2 Loyola 19
Group 3 Kent 15

http://www.tobii.com
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with one over the other). As expected, those without computer science training
either preferred underscores (46%) or had no preference (45%). Interestingly, the
preferences of those trained using camel casing was 38% preferring underscores.

The second group is a subset of nineteen programmers from the first group who
were all in at least their second year of university. Forty-seven percent had between
one and two years of training, while the rest had four years of training. This group
included 79% males.

The final group includes fifteen programmers from Kent State University who
had experience with both identifier styles. Subjects included seven undergraduates
in their second year of study, six graduate students, and two faculty members. Most
of these subjects were trained in the underscore style. In this group, 40% stated that
they preferred camel case, while 47% preferred underscore. The remainder had no
preference. The participants were predominantly male with only two females.

2.4 Statistical Techniques

In addition to standard statistical tests such as a Chi squared test, three statistical
modeling techniques are used, one for numerical response variables and the other
two for categorical response variables. All deal with repeated-measures and missing
values and can easily accommodate unbalanced data (Molenberghs and Verbeke
2006; Verbeke and Molenberghs 2001). Accounting for repeated measures is im-
portant because data is collected multiple times from each subject. These statistical
models allow the identification and examination of important explanatory variables
associated with a given response variable.

The first technique, a linear mixed-effects regression model, is used to model nu-
merical response variables as a function of a collection of explanatory variables that
may include a number of interaction terms (written V1 * V2). The interaction terms
allow the effects of one explanatory variable on the response to differ depending
upon the value of another explanatory variable. For example, if Training interacts
with Style in a model where Time is the response variable, then the effect of Training
on Time depends on Style (i.e., is different when using camel casing than when using
underscores). Backward elimination of statistically non-significant terms (p > 0.05)
yields the final model. Some non-significant variables and interactions are retained
to preserve a hierarchically well-formulated model (Morrell et al. 1997).

A second modeling technique is needed when the response is a binary variable as
standard mixed-effect models are not appropriate. In this case, Generalized Linear
Mixed Models (GLMMs) are used (Molenberghs and Verbeke 2006). Such models
account for repeated measures while providing a model for the probability of the
binary outcome (e.g., the probability of correctness). The approach fits a logistic
model to the probability of being correct for this binary variable as a function of the
explanatory variables with a subject-specific random effect that allows for variability
among subjects.

In more detail, to model a response variable Correct using a set of J explanatory
variables X j, the model estimates the probability, p, of a correct answer by modeling
the log-odds. Using a simple example, suppose that there are two groups. The log-
odds uses a comparison of the odds of Correct between the two groups. The odds of
Correct for Group 1 is p1

1−p1
and the odds of Correct for Group 2 is p2

1−p2
. The ratio of
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these odds (or odds ratio) is p1/(1−p1)

p2/(1−p2)
. Thus, if the odds ratio = 1.5, then the odds of

being correct in Group 1 is 1.5 times the odds of being correct in Group 2 (i.e., 50%
higher odds of being correct).

For a binary outcome variable, logistic regression models describe the logarithm
of the odds as a linear function of explanatory variables, X1.X2, ..., XJ .

log-odds(Correct|X1, X2, ..., XJ) = β0 +
J∑

j=1

β jX j + ui

The effect of a unit increase in X j (while holding the other explanatory variables
constant) on the log-odds is given by β j. It follows that eβ j is the ratio of the odds for
a unit increase in X j (the odds ratio),

odds(Correct|X j + 1)

odds(Correct|X j)
.

Additionally, ui is a random effect that is assumed to come from a normal distribution
and allows for variability in responses among the subjects. Significant variables in
this type of model will be reported with their p-value and their odds ratio (eβ̂ j , the
estimate of eβ j).

When the outcome variable is ordinal (an ordered categorical variable), a model
must be used that accounts for the order among the categories. The proportional
odds model uses the odds P(Y≤ j)

P(Y> j) , rather than P(Y=1)

P(Y=0)
as done in the binary case. This

third technique models the proportional odds as a linear function of explanatory
variables, so it also belongs to the family of GLMMs. In the resulting models,
when the odds ratio is greater than 1 then an increase in an explanatory variable is
associated with lower levels of the categorical variable because it leads to an increase
in the numerator P(Y ≤ j) relative to the denominator P(Y > j).

Finally, when discussing statistical significance, a p-value < 0.05 is considered
statistically significant. A p-value that ranges from 0.05 to 0.1 is considered to be
marginally significant and will be described as such.

3 Research Questions and Hypotheses

The goal of this research is to better understand the impact of identifier style on
program comprehension. It is addressed by investigating two research questions.
The first research question considers low-level syntactic readability issues, predicated
on previous work in the area of natural language understanding, which investigates
the effect that fillers (e.g., Greek letters, digits, or shaded boxes) have on reading
time (Epelboim et al. 1997). The second research question considers semantic
implications of the style difference on program comprehension. The results related
to the first question provide a foundation for those concerning the second. It is
important to understand both levels in the comprehension process. For example,
low-level differences may not impact higher-level tasks. Alternatively, higher-level
tasks may be greatly impacted by low-level differences. These studies endeavor to
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understand the entire picture of low-level readability and high-level comprehension
tasks. Two research questions are considered:

Research Question 1 Mirroring research on natural-language reading, does iden-
tifier style impact readability?

Research Question 2 Assuming a difference in readability, does identifier style
affect higher-level comprehension activities?

Five experimental studies are used to answer these questions. The first two studies
(The Cloud study and Where’s Waldo study) present three experiments that address
Research Question 1. The subsequent three studies (SAT, Tracker-code, and Read-
aloud) investigate the higher-level comprehension issues of Research Question 2.

In the description of the studies, the term Style denotes the use of either camel
casing or underscores. The term identif ier is used to refer to a syntactically legal
identifier that follows one of these two styles. The term part is used to refer to a
well-separated section of an identifier. For example, the identifier total_cost has two
parts, total and cost. The term Length refers to the number of parts (e.g., two in the
case of total_cost). Finally, the term phrase is used to refer to a sequence of parts
that can be used to construct an identifier. For example, the phrase total cost can be
used to construct the identifiers total_cost and totalCost.

The two research questions are addressed using two pervasive hypotheses evalu-
ated relative to each study. In the first, performance is dependent on the particular
study while the second hypothesis addresses efficiency as measured by the time taken
to complete a task. In addition to these two hypotheses, some studies introduce
additional hypotheses to explore aspects specific to the study. The first pervasive
hypothesis informally states that Style af fects performance.

Performance Hypothesis

H0 Performance is the same regardless of the Style of the identifier
HA Performance is affected by identifier Style

This hypothesis will help determine if developers should use a particular style. If, for
example, subjects have higher performance when using identifiers constructed with
one style, then it would be a mistake for style guides to encourage the alternative
style. Choosing a style that leads to an increased performance could have practical
benefits in terms of fewer bugs or reduced time to comprehend a new piece of source
code.

The second hypothesis informally states that Style af fects ef f iciency.

Efficiency Hypothesis

H0 Efficiency is the same regardless of the Style of the identifier
HA Efficiency is affected by identifier Style

In this case, a positive finding comes if subjects are able to complete the task in
the study faster when identifiers are in one style over the other. All other things
being equal, decreased efficiency equates to increased software cost (i.e., software
maintenance cost).
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4 The Cloud Study

The Cloud study, whose name comes from the use of cloud images, addresses Re-
search Question 1. This section summarizes two previously presented experiments:
the Applet-cloud (Binkley et al. 2009a) and Tracker-cloud (Sharif and Maletic 2010a).
Both measure Style’s impact on a subject’s ability to read phrases. Their presentation
includes experimental design, the explanatory variables gathered, the six hypotheses,
and finally the results and implications.

4.1 Experimental Design

The design is described by first considering the selection of the phrases used in the
experiments followed by the layout of the two experiments. To investigate the impact
of Style, a range of phrases from different sources is needed. This range factors in
two aspects: length and origin. The choice of lengths was based on a collection of
approximately 6.3 million lines of code taken from a cross section of open-source
applications. Out of almost 50 million extracted identifiers, 43.8% had only one part.
With each additional part, the percentage decreases with 29.5%, 16.4%, and 6.2%
having two, three, and four parts. In fact, approximately 90% of identifiers were
composed of one, two, or three parts. Because Style is irrelevant for identifiers of
length one, the experiment considers phrases of two and three parts.

The origin of a phrase captures whether or not the phrase is likely to be found
in source code. Given that some of the subjects had no programming experience,
this aspect was used to investigate whether familiarity with a phrase would have
any effect on performance. To this end, non-source code phrases were selected from
common English phrases (e.g., river bank), while the remaining phrases were taken
from existing source code (e.g., get next path). The source code phrases were drawn
by scanning the 50 million extracted identifiers ensuring the selection satisfied the
length requirement.

To balance the time required to take part in the study with the need to collect
sufficient data from which to draw statistical conclusions, it was decided that eight
questions would be asked. For each style, this choice allows each possible combina-
tion of length and phrase origin (2-Word Code, 2-Word Non-Code, 3-Word Code,
and 3-Word Non-Code). Each subject saw each combination twice: once for each
style.

The eight selected phrases are shown in Column 1 of Table 2, which also presents
the distractors used for each phrase. Distractors are wrong answers designed to help
determine if the kinds of errors subjects make can be systematically classified. In
each experiment distractors are chosen systematically to investigate their impact on
subject performance. In this study, for each question, one distractor modified the
beginning of the phrase, one the middle, and one the end. In addition, for the two
styles the modifications were made so that the Levenshtein Edit Distance1 remained

1The Levenshtein Edit Distance is the minimum number of operations needed to transform one
string into another. An operation is an insertion, deletion, or substitution of a single character.
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Table 2 The phrases used in the study’s eight questions, categorized by length and phrase origin

Phrase Distractors

Beginning Middle End

2-Word Code
start time smart time start mime start tom
full pathname fill pathname full mathname full pathnum

3-Word Code
get next path got next path get near path get next push
extend alias table expand alias table extend alist table extend alias title

2-Word Non-Code
river bank riser bank river tank river ban
drive fast drove fast drive last drive fat

3-Word Non-Code
read bedtime story raid bedtime story read bedsore story read bedtime store
movie theater ticket mouse theater ticket movie thunder ticket movie theater ticker

The distractors appear to the right of each phrase. In the Applet-cloud experiment, Style was
randomly assigned to each pair for each subject. In the Tracker-cloud experiment, a fixed assignment
was used with camel casing being used for Phrases start time, extend alias table, river bank, and movie
theater ticket

constant between the phrase and its distractor for each combination of length and
phrase origin.

To support a test for learning effects, consistency across phrase origin was
maintained in the distractors. For example, the middle distractor for the 2-Word
Code phrase start time is start mime, which modifies one character (the first letter
of the second word). For consistency, the other 2-Word Code phrase, full pathname,
has a distractor full mathname, which also modifies the first letter of the second word.
Table 3 summarizes the modifications used with each combination. In addition to edit
distance, the table indicates when the start of a word is modified, when the end of a
word is modified, and when the word’s length is reduced by one character. These
changes are noted because these types of changes may influence the performance
of the subjects (something that is investigated by distractor analysis). Finally, Non-
Code distractors were required to consist of English words, although the words did
not have to create a coherent phrase. Given that some of the distractors are more
coherent, there is a potential impact on participants who attempt to comprehend
each phrase. Participants were expected to read but not necessarily comprehend the

Table 3 For each combination shown in the first column, the modification criteria for the three
distractors is given

Combination Distractor change locations

Beginning Middle End

2-Word Code 1 1 (start) 2 (−1 length)
3-Word Code 1 2 (end) 2
2-Word Non-Code 1 1 (start) 1 (−1 length)
3-Word Non-Code 2 2 1 (end)

Each includes the edit distance for the particular distractor, an indication that the change occurred
at the start or end of a word and “−1 length” if the distractor is one character shorter



230 Empir Software Eng (2013) 18:219–276

phrases. While such behavior is unenforceable, it would have shown up in the timing.
Finally, the Applet-cloud experiment was designed to avoid bias from the distractor
selection by using the same identifiers and distractors with both identifier styles.
Thus, in this study, over all participants, each distractor was seen approximately the
same number of times in the camel case and underscore styles.

The first cloud experiment, referred to as the Applet-cloud experiment, is laid
out around eight questions, one for each of the eight phrases shown in Table 2.
After brief instructions and a practice training question, a subject is presented with
the eight study questions. Each question is presented using two screens. The first
shows the phrase. The subject is free to study this screen for as long as desired. After
pressing “next,” the subject is shown the identifier constructed from the phrase and
its three distractors and should click on the identifier built from the phrase. Rather
than showing these four as a simple list, they are presented inside moving cloud
images for two reasons. First the motion increases the reading difficulty. Second,
this layout provides a more game-like interface in the hope of encouraging subjects
to vest in the activity and complete the task both quickly and accurately. Clouds all
move from a starting position in a random direction and at a random speed. For
each question, the initial position, angle, and speed of each cloud was randomly
determined and then fixed, so that each subject saw the same pattern of motion.
Figure 1 shows the clouds as they appeared in the second cloud experiment Tracker-
cloud.

The order of the eight questions is important to avoid biases and learning effects.
The phrases used in the eight questions were arranged into two groups. Each group
was balanced by Length and Style and thus consisted of a 2-word identifier using
camel casing, a 2-word identifier using underscores, a 3-word identifier using camel
casing, and a 3-word identifier using underscores. In addition, within a group, for
each length, one of the phrases was a Code phrase and the other Non-Code phrase.
Thus, evenly distributing all eight possible combinations used to construct the eight
questions. Finally, the presentation order of the questions from within a group was
determined using Latin squares to avoid systematic learning biases. This also ensures
that initial position, angle, and speed were balanced between the camel case and the
underscore identifiers.

phrase stimulus question stimulus

Fig. 1 An example phrase stimulus (left) that shows the phrase to be studied and an example question
stimulus (right) that shows the task description and the four clouds
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The experiment was conducted over the Internet using a Java applet, which has
several advantages. First, the applet prevents the use of the Web browser’s back
button and thus provides flow control. Second, the applet was configured to capture
how long each subject spends on each question. Finally, the results gathered are
already in a digital format, which supports easy manipulation and statistical analysis
without data-entry errors.

The second cloud experiment, referred to as the Tracker-cloud for short, is laid
out around the same eight phrases as the Applet-cloud experiment. Replicating
the experiment using an eye tracker adds to the empirical evidence as to which
Style subjects find visually easier to work with. An eye tracker measures exact
gaze location and duration, which supports a fine-grained analysis. Subjects were
first presented with instructions and then two sample questions: one camel case
and one underscore, illustrating how to answer the questions. Next, eight questions
were asked based on the eight phrases. As shown in Fig. 1, each question used
two screens where the first presents a phrase and the second shows the four
clouds.

The Tracker-cloud experiment has four differences when compared to the Applet-
cloud experiment. First, due to the complexity of running experiments with the
eye tracker, the assignment of Style was fixed (using a random assignment) for
all subjects. The camel-case Style for start time, river bank, extend alias table, and
movie theater ticket and the underscore Style for full pathname, drive fast, get next
path, and read bedtime story were used. From the data collected during the Applet-
cloud experiment, with one exception, there is no statistical difference in participant
performance between corresponding phrases shown in Table 2. The exception is
full pathname being significantly harder to find than start time. In the Tracker-
cloud experiment, the underscore version of full pathname was chosen, essentially
handicapping the underscore approach for 2-word code identifiers. The second
difference is that due to the complexity of thoroughly testing the data collection
program, the clouds remained in a fixed (random) position. Third, to make the task
more difficult, the phrase did not accompany the answer and the three distractors on
the second screen. Fourth, the Tracker-cloud experiment was interactive. Subjects
verbally told a moderator when they had studied the phrase sufficiently and which
cloud (an alphabetic label was added to each cloud as is shown in Fig. 1) included the
correct answer. The subject verbally said “Next” when they were ready to proceed
to the next screen. Thus, the setting was more controlled than the Applet-cloud
experiment where the subject themselves progressed through the questions using a
mouse.

Use of a moderator is a necessity given the sophistication of interacting with the
eye tracker. For example, the moderator is needed to calibrate the eye tracker for
each subject. Additionally, the eye tracker does not deal well with users leaving the
“head box”. This can occur when a subject rests back in their chair, for example.
While this did not occur often during this study, the moderator alerted subjects
when data was about to be lost. The alternative is more intrusive as it places the
burden of accurate data collection on the subject. Thus, the inclusion of a moderator
is preferred.

Finally, the eye-tracker studies were conducted in a dedicated room for the eye-
tracking equipment. The subject was seated approximately 60 cm away from the
screen. The next step was a five-point calibration of the eye tracker for the subject.
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During calibration, a subject focused their eyes on five points that appear on the
screen (four for each corner, one for the center). The background color of the
calibration was set to white because this was the background of the stimuli used in
the study.

4.2 Variables

To account for factors that might affect a response variable and thus, to help
ensure that inferences about the effect of Style on a given response variable were
not confounded by extraneous factors, 21 explanatory variables were considered.
Many of these turn out to have no significant effect in any of the final models.
The descriptions of the variables below include only those that have an impact
in at least one of the final models. A discussion of the complete set of variables
considered and the models they were initially used in is given in a companion
technical report (Binkley et al. 2011).

The variables collected during the cloud experiments include three response
variables and six relevant explanatory variables. The first response variable, Correct-
ness, reflects the subject identifying the cloud containing the correct identifier. The
second, Find Time, represents the time taken to select this cloud. The third response
variable, Visual Effort, measures six quantities related to eye movements during the
question stimulus and is only considered in experiments involving the eye tracker.
The first three of the six eye movement quantities are fixation counts, FC, and include
FC(correct), which counts fixations on the correct cloud, FC(distractors), which
counts fixations on the distractor clouds, and FC(all), which is the sum of FC(correct)
and FC(distractors). The other three measure the average f ixation duration (AFD).
AFD(correct) is the average length of time of all fixations on the correct cloud and
AFD(distractors) is the average length of time of all fixations on the distractor clouds.
AFD(all) is the average length of time of all fixations on any of the clouds. Fixation
rates, fixation counts, and average fixation duration for the phrase stimulus were also
considered, but not found significant.

The primary explanatory variable, Style has two values camel case and underscore.
The remaining explanatory variables come from three sources: the questions, the
subject’s performance, and the demographics. The two variables related to each
question are the Length of the phrase (two or three) and the Phrase Origin (Code
or Non-Code). The first of the two performance related variables, Reading Time,
measures how long the subject spent reading the original phrase on the phrase
stimulus screen before proceeding to the question stimulus to search for it in a cloud.
The second, Time on Demographics, measures how long the subject took filling in
the demographic information and was only collected in the Applet-cloud experiment.

Finally, demographic variables help uncover patterns that arise from the subjects’
background. Only Training, which captures the amount of computer science training
the subject had received, has a significant effect in at least one cloud model. There are
four categories for this variable: “No Training,” “Less than a year,” “Between one
and two years,” and “More than two years.” In some of the models the last category
is divided into two parts based on work experience as given by the binary variable
Experience. It has the value expert programmer when the subject had more than two
years of work experience and at least five years studying computer science, and the
value beginner programmer otherwise.
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4.3 Experimental Hypotheses

Six hypotheses are used to study Research Question 1. The first two, introduced
in Section 3, consider subject performance using Correctness and subject efficiency
using Find Time. The study also considers two additional hypotheses that deal with
Training and two that deal with Visual Effort. In the following description, each
hypothesis is formally stated and then explained.

The first additional hypothesis informally states that training can overcome errors
attributed to Style.

Hypothesis Cloud 1

H0 The effect of Style on Correctness is independent of Training.
HA The effect of Style on Correctness lessens due to Training.

Because Hypothesis Cloud 1 involves the influence of one variable on another, sup-
port for the hypothesis will be evident in the statistical significance of an interaction
between Style and Training. If the interaction is present then the log-odds of Training
on Correctness will be different for underscore and camel case. For example, when
asked, most non-programmers held the opinion that camel casing would be harder
to visually process and thus lead to more errors. Rejecting the null hypothesis for
Hypothesis Cloud 1 implies that training can be used to mitigate the impact of such
reading errors.

The second hypothesis mirrors the first for the time taken.

Hypothesis Cloud 2

H0 The effect of Style on Find Time is independent of Training.
(that is the slope of Style on Find Time will be the same for the different levels
of Training.)

HA The effect of Style on Find Time lessens due to Training.

Rejection of the null hypothesis H0 for Hypothesis Cloud 2 indicates that an engineer
can be trained to work quickly and effectively to read identifiers regardless of Style.
Visually, this kind of interaction appears as a difference in slopes (looking ahead this
is illustrated in Fig. 6).

Rejecting the null hypothesis would indicate that the lines representing camel
casing and underscore in the interaction plot have different slopes. To appreciate the
broader implication of Hypotheses Cloud 1 and Cloud 2, assume that there is support
for the Performance and Efficiency Hypotheses that predicts better performance
when using underscores. While this observation would be an interesting result, it
still does not completely address the identifier Style question. For example, it is
possible that training could overcome this difference without having negative side-
effects. In this example, positive results for Hypotheses Cloud 1 and Cloud 2 would
indicate that training with camel casing could be used to compensate for natural
ability.

The last two hypotheses only apply to the six eye-tracking measures, collectively
referred to as Visual Effort. The third hypothesis informally states that Style affects
Visual Effort.
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Hypothesis Cloud 3

H0 Visual Effort is the same regardless of Style.
HA Visual Effort is affected by Style.

Similar to the Performance Hypothesis, this hypothesis will help determine if engi-
neers should be required to use a particular Style. Choosing a Style that leads to a
decrease in Visual Effort could have practical benefits in terms of fewer bugs or an
easier time comprehending a new piece of source code.

The fourth hypothesis informally states that training can overcome the Visual
Effort differences attributed to Style.

Hypothesis Cloud 4

H0 The effect of Style on Visual Effort is independent of Experience.
HA The effect of Style on Visual Effort lessens with Experience.

Similar to Hypothesis Cloud 1, Hypothesis Cloud 4 involves the influence of one
variable on another and thus support for the hypothesis will be evident in the
statistical significance of an interaction between Style and any of the measures of
Visual Effort.

4.4 Distractor Analysis

This section presents highlights from the distractor (wrong answer) analysis of the
data from the two cloud experiments. A complete distractors analysis is given in
the companion technical report (Binkley et al. 2011). For the Applet-cloud exper-
iment, distractor analysis was done for the camel case and underscore versions of
each question separately. In all, sixteen questions were considered. Each subject
responded to eight of them. The two most difficult questions were the camel case
and underscore versions of the phrase extend alias table, although there were no
significant differences among subjects with or without computer science training on
these two items. Considering the distractors, a χ2 test reveals no difference between
camel casing and underscore phrase changes as a function of distractor change
locations (as given in Table 3).

In the Tracker-cloud experiment, the item movie theater ticket produced the most
fixations on distractors, followed closely by extend alias table. In terms of time, the
distractor mouseTheaterTicket had the highest average fixation time. The two items
producing the most fixations on distractors were three-word camel-case distractors.
Finally, the greatest fixation number and fixation time for the distractors were always
camel case distractors. Camel casing’s dominance supports the intuition of non-
programmers concerning its demand for greater visual effort.

4.5 Statistical Models

Statistical models for the response variables Correctness, Find Time, and Visual
Effort are presented herein. Models are always constructed in pairs. The first, or
simple, model of a pair includes only one explanatory variable, Style, while the
second, or complex model, includes other explanatory variables. While the inclusion
of additional explanatory variables tends to improve the model, it can have one of
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two effects on Style. In some cases, the influence of Style decreases because other
explanatory variables better explain (some of) the variation in the response variable.
However, in other cases, the influence of Style increases because it only needs to
explain a subset of the variation for which it is well suited. In this study, the two
models for Correctness are not meaningful for the Tracker-cloud study because only
one subject gave a wrong answer. The Visual Effort models are only meaningful for
data gathered using the eye tracker and so response variables related to Visual Effort
are modeled only for the eye tracker experiment. In total, 26 statistical models are
considered.

4.5.1 Applet-Cloud Experiment Models

For the Applet-cloud experiment, four models were constructed. The first two have
the response variable Correctness, which is a binary variable (having the values
“yes” and “no”), and thus Generalized Linear Mixed Models (GLMMs) were fit to
the data. The second two models have the response variable Find Time, which is not
a binary variable, so linear mixed-effects regression models were fit to the data.

Overall, the percent Correctness for the underscore Style is 0.84 (Std Dev = 0.36),
while the average for the camel case Style is 0.89 (Std Dev = 0.32). In the simple
model, the parameter estimate for Style is statistically significant (odds ratio = 1.515,
p = 0.0250). The model indicates that camel casing has a larger probability (equiva-
lently higher odds) of Correctness when compared to underscores. In particular, the
odds of being correct are 51.5% higher for camel case.

To account for other factors that might influence Correctness, additional explana-
tory variables were considered. Those found relevant were described in Section 4.2,
while the complete set can be found in a companion technical report (Binkley
et al. 2011). In addition, the variable Find Time and the interactions of Style with
each of the explanatory variables were included. After the elimination of non-
significant terms, the following terms remained in the final model: Style, Time on
Demographics, Reading Time, Length, and Phrase Origin. The parameter estimates
given in Column 2 of Table 4 are the estimates of β j for each model variable.
After accounting for the other terms, the model indicates that the use of camel case
leads to a larger probability of Correctness than underscore (odds ratio = 1.617,
p = 0.0127). Comparing these results with the simple model illustrates a case in
which the presence of other explanatory variables has improved the estimate for
Style. In this case its p-value drops from 0.0250 to 0.0127 indicating that 1.617 is a
better estimate of Style’s coefficient than 1.51 reported by the simple model.

Table 4 Applet-cloud GLMM model for Correctness

Variable Estimate p-value Odds ratio

Intercept 2.785 <0.0001
Style 0.480 0.0127 1.617
Time on demographics 0.073 <0.0001 1.075
Reading time −0.095 0.0073 0.910
Length −0.820 <0.0001 0.441
Phrase origin −0.472 0.0142 0.624

Note that the Odds ratio is eEstimate



236 Empir Software Eng (2013) 18:219–276

The complex model also indicates that a longer Reading Time leads to a lower
probability of Correctness (odds ratio = 0.910, p = 0.0073) and a longer Time on
Demographics leads to a higher probability of Correctness (odds ratio = 1.075, p <

0.0001). In addition, a lower probability of Correctness comes with having greater
Length (odds ratio = 0.441 p = 0.0142) or when Phrase Origin is Code (odds ratio =
0.624, p < 0.0001). These results indicate that poorer readers (identified by increased
Reading Time) are less likely to be correct regardless of Style. Given that Time on
Demographics is also associated with a subject’s reading speed and this variable has
the opposite sign of Reading Time, it is likely that this variable has a dampening
effect on an over-estimate created by Reading Time. Such dampening effects are
common in correlated variables.

Next, Find Time is considered where the average underscore time is 3.1 seconds
(Std Dev = 1.7), whereas the average camel case time is 3.5 s (Std Dev = 2.1). As
with Correctness, initially only Style is considered. It is statistically significant (p <

0.0001). The estimate indicates that, on average, camel case takes 0.42 s (13.5%)
longer than underscores. To account for other factors that might influence this time,
the second model includes the additional explanatory variables, Correctness, and
the interactions of Style and Correctness with each of the other variables. After
backward elimination, the final model includes the five explanatory variables shown
in Table 5.

In this model, interactions require all but the effect of Length to be considered
together. There are two effects to consider. First, the parameter estimate (slope) of
Training is 0.106 for underscore and −0.104 for camel case. This slope difference
suggests that those with more training were quicker on camel case than those with
less training and that those with more training were slower on underscore than
those with less training. However, this effect is only just statistically significant.
The final two interactions both involve Time on Demographics and thus must be
interpreted together. The effect on Find Time from smallest influence (shallowest
slope) to largest influence (steepest slope) comes from correct answers to problems
using underscore, correct answers to problems using camel case, wrong answers to
problems using underscore, and finally, wrong answers to problems using camel
case. Considering Style’s involvement, for both correct and incorrect answers, and
assuming that Time on Demographics acts as a proxy for reading ability, the camel
case Style slows weak readers down more than strong readers. Finally, the effect of
Length is independent (it is not involved in any interactions). The effect of a unit
increase in Length is to increase Find Time by 0.98 s. Thus, each additional part
increases identifier recognition time by about a second.

Table 5 Applet-cloud model
for Find Time

Variable Estimate p-value

Intercept −3.375 <0.0001
Style −0.126 0.7253
Correctness 1.164 0.0039
Training 0.106 0.1317
Time on demographics 0.143 <0.0001
Length 0.981 <0.0001
Style * training −0.210 0.0342
Style * time on demographics 0.033 0.0013
Correctness * time on demographics −0.040 0.0126
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Table 6 Tracker-cloud model
for Find Time

Variable Estimate p-value

Intercept 4.607 <0.0001
Phrase origin 0.749 0.0170
Length −0.950 <0.0001
Style 1.816 0.0032
Style * length −1.768 0.0050

4.5.2 Tracker-Cloud Experiment Models

In all, twenty-four models are constructed from the eye-tracker data. This section
considers the sixteen in which Style is significant. The first two consider Find Time
while the remainder consider the six different relevant measures of Visual Effort.
As with the Applet-cloud experiment data, half of these consider only the impact of
Style (i.e., the simple model). The other half consider all the explanatory variables
and their interactions.

In this experiment the average Find Time for the underscore Style is 4.5 s (Std
Dev = 1.8), while the average camel case time is 5.4 s (Std Dev = 2.9). In the simple
model for Find Time, Style is significant (p = 0.0143). The estimate indicates that
on average, camel casing takes subjects 0.93 s longer than underscores. The complex
model initially included all the other explanatory variables and their interactions with
Style. After backward elimination, the final model includes the three explanatory
variables shown in Table 6. This model confirms the significance of Style. Because
of the interaction with Length, Style cannot be discussed separately. This interaction
indicates that, while there is almost no difference when Length is two, camel casing
takes 1.8 s longer for the three-word phrases. Furthermore, phrases extracted from
source code take 0.75 s longer than the non-source code phrases.

The remaining twelve models have Visual Effort as their response variable.
Style is significant in three of six simple models, and Table 7 contains descriptive
statistics for the response variables in these models. These models predict three
average fixation durations: AFD(correct) where camel casing takes 0.013 s longer
(p = 0.0205), AFD(distractors) where camel casing takes 0.022 s longer (p = 0.0357),
and AFD(all) where camel casing takes 0.051 s longer (p = 0.0269). As indicated by
the weakness of the statistical association, none of these show a large influence.

Turning to the complex models, for the above three response variables, elimi-
nation removes all the explanatory variables except Style. Thus, differences in the
values of AFD(correct), AFD(distractors), and AFD(all) can be explained by the single
explanatory variable Style. The other three models, for FC(correct), FC(distractors),

Table 7 Descriptive statistics
by Style for Visual Effort

Variable Underscore Camel case

Mean Std. dev Mean Std. dev

AFD (correct) 0.16 0.080 0.18 0.86
AFD (distractors) 0.38 0.23 0.43 0.29
AFD (all) 0.15 0.061 0.16 0.074
FC (correct) 7.92 3.92 8.67 6.14
FC (distractors) 10.47 5.27 11.23 7.82
FC (all) 18.45 8.02 20.28 13.31
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Table 8 Tracker-cloud models
for FC(correct),
FC(distractors), and FC(all)

Variable Estimate p-value

FC(correct)
Intercept 6.908 <0.0001
Phrase origin 2.183 0.0015
Length −0.167 0.8604
Style 2.733 0.0047
Style * length −3.967 0.0037

FC(distractors)
Intercept 11.367 <0.0001
Length −1.800 0.1591
Style 3.400 0.0086
Style * length −5.267 0.0041

FC(all)
Intercept 17.683 <0.0001
Phrase origin 3.500 0.0172
Length −1.966 <0.0001
Style 6.133 0.2074
Style * length −8.600 0.0037

and FC(all), are shown in Table 8. Phrase Origin is present in two of the three
models where phrases extracted from source code require an additional 2.1 fixations
for FC(correct) and 3.5 for FC(all). The higher number of fixations indicates longer
processing time needed for source-code phrases because they might not be part of
everyday vocabulary. In all three models, as with the Find Time models, there is an
interaction between Style and Length. The interaction of Style * Length indicates
that while there is almost no difference when Length is two, camel casing takes 3.9
more fixations for the correct phrase when Length is three. While it is not surprising
to see that it takes more fixations to read a longer phrase, this effect is even more
prevalent when camel casing is used.

4.6 Discussion

In considering the impact of the statistical models on the six cloud hypotheses, no
head-to-head comparisons are made; thus, differences in their setup is not an issue.
Instead, the two complement each other. This section considers each hypothesis in
turn.

Performance Hypothesis 2—Correctness is affected by identif ier Style

Support for the hypothesis is found in both Correctness models where the use of
camel case increases Correctness. Because Style is significant, the null hypothesis
can be rejected.

Efficiency Hypothesis—Find Time is affected by identif ier Style

Support for the hypothesis is found in all four Find Time models where Style is
significant; thus, the null hypothesis can be rejected. All four models find that
identifiers written in the camel-case Style take longer to identify.

2The Performance and Efficiency Hypotheses are restated in terms of the variable used to study it.
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Hypothesis Cloud 1—The effect of Style on Correctness lessens due to Training

The complex model for Correctness is required to address Hypothesis Cloud 1.
Because the interaction between Style and Training is not significant in this model,
the null hypothesis cannot be rejected. Training has no observed impact on how Style
affects Correctness.

Hypothesis Cloud 2—The effect of Style on Find Time lessens due to Training

The two complex models for Find Time are required to address Hypothesis Cloud
2. Support comes from an interaction between Style and Training. In the Applet-
cloud experiment, this interaction is significant. Those subjects with more training
(in the camel-case Style) were quicker on identifiers written in the camel-case Style.
Because subjects with more training were also slower than subject without training
on identifiers written in the underscore Style, it appears that training in one Style
negatively impacts performance for the other. In the Tracker-cloud experiment, the
interaction is not significant. Because the interaction is significant in the first model,
there is evidence against the null hypothesis, but the evidence is not conclusive.

Hypothesis Cloud 3—Style affects Visual Effort

Non-programmers have stated that camel casing would be harder to visually process
and thus lead to more errors. Results from the Tracker-cloud experiment confirm
the belief that the visual processing is harder as higher fixation counts accompany
camel-case identifiers.

Based on the three models for FC(correct), FC(distractors), and FC(all), there
is evidence to reject the null hypothesis indicating that Visual Effort is affected by
identifier Style. In particular, long camel-case identifiers require significantly greater
visual effort.

An excellent illustration of this greater visual effort comes from looking at eye-
tracker gaze plots. As seen on the left of Fig. 2, the gaze pattern for an underscore
example exhibits the expected landing point pattern where the eye gazes between
the first and second characters of each word. The middle gaze plot shows the 3-part
Non-Code identifier mouseTheaterTicket. Three large fixations are seen on the three
parts mouse, Theater, and Ticket. The landing points of all three words has shifted one
to two letters to the right.

This is evidence of the visual confusion that camel casing is causing as the fixation
points are farther into each word than would be expected when reading normally
separated words. The gaze plot also shows the longer duration (larger circles)
indicating increased mental parsing time needed to process the joined word. The

Fig. 2 Gaze plots for an
underscore (top) and two
camel cased 3-word code
identifiers. The plots illustrate
the visual confusion that camel
casing presents to subjects
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final gaze plot shows extreme visual confusion as a subject reads extendAliasTable.
These gaze plots illustrate how camel casing causes at least two subjects to visually
work harder, slowing them down. However, the greater concentration improves their
accuracy. Training can help to reduce but not eliminate the time difference.

Hypothesis Cloud 4— Training can overcome the Visual Effort differences attribut-
able to Style

In the complex models for Visual Effort the interaction between Experience and
Style is never significant. Thus, there is insufficient evidence to reject the null
hypothesis.

Summary of Results

Unifying these results, from the Correctness models camel casing produces more
accurate results. However, this correctness comes at a cost as the camel-case Style
significantly increases the time needed to correctly detect the correct identifier. The
cause is made apparent in the eye-tracker models where greater visual effort is
required. Thus, the first Cloud study provides an affirmative answer to Research
Question 1: Style impacts readability.

5 Where’s Waldo Study

The cloud study concluded that Style impacts the readability of identifiers. Building
on this result, the second study, which also investigates Research Question 1,
considers a similar readability question, but in a more realistic setting. Thus it helps
to tie the previous results to activities on source code. While no deep comprehension
is needed to complete the second task, it does reflect a more common task for a
developer.

This study asks subjects to find all occurrences of a particular identifier in a code
fragment mimicking the game “Where’s Waldo.” This task is similar to that per-
formed by programmers scanning source code for a concept or identifier. Although
an IDE can easily highlight all uses of a single variable, a programmer reading a
function or a class must often keep track of several different variables. The ability to
visually discriminate between variables is an underlying task to such reading.

5.1 Experimental Design

The design considers the selection of the four code fragments and the layout used in
the study. Two of the fragments were taken from open-source software, one being
a C program and the other Java and two from text books, again one C and one
Java. There were two requirements on this code. First, a significant proportion of
the identifiers must have multiple parts so that Style might play a role. Second, some
of the identifiers must have common words. The two open-source fragments were
used as-is and appear on the left side of Fig. 3.

The two textbook fragments were modified to ensure that their identifiers met
the two requirements. For example, quicksort’s partition method was used as one
of the code fragments. Rather than pivot, high, and low, the variables currentPivot,
currentLow, and currentHigh were used. This code snippet appears in the upper
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Fig. 3 The four example Waldo questions

right of Fig. 3. The final fragment converts Fahrenheit to Celsius and appears in the
lower right of Fig. 3. Finally, a representative identifier for subjects to search for was
selected from each fragment. These targets are attacked health, current high, game
board, and temp result as indicated in Fig. 3.

The Where’s Waldo study was laid out around four questions. Each question
consisted of three screens. The first screen let the subject prepare herself for the
exercise. The second screen revealed the identifier for which the subject must search.
The final screen consisted of one of the code fragments from Fig. 3. Each line was
proceeded by a check box. The subject was instructed to check all lines where the
identifier of interest appeared. To eliminate recall issues, the identifier of interest
appeared in the upper right corner of the final screen. The subject clicked a button
when they believed they had found all the lines containing the target.

As in the Applet-cloud experiment, there is a practice exercise before the ques-
tions whose order was systematically determined using Latin Squares to avoid biases
and learning effects. The four questions were encountered in the same order for
each subject; however, the Style in which a question appeared differed by subject.
Each subject saw two questions in each style. This study was conducted in the same
environment as the Applet-cloud experiment using the first group of subjects and
was preceded by it. In addition, half of the subjects completed the SAT study (in
Section 6) before this experiment.
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5.2 Variables

The variables collected during the Where’s Waldo study include two response vari-
ables and six relevant explanatory variables. The response variables are similar to the
response variables for the Applet-cloud experiment, where one concerns correctness
and the other time. Correctness is impacted by both missed lines where a line includes
the identifier of interest but the check box is not checked and extraneous lines where
the line does not include the identifier of interest but the check box is checked.
However, extraneous lines are a rare event (only 4% of the answers included
extraneous lines), so correctness is directly measured and more easily interpreted
using only the number of missed lines, which is captured by the explanatory variable,
Missed Lines. The second response variable, Time Scanning Code, is the amount of
time that a subject spent looking for all occurrences of an identifier.

As in the Applet-cloud experiment, the primary explanatory variable is Style. The
remaining explanatory variables come from three sources: the subject’s performance,
the questions, and the demographics. There is one variable pertaining to the subject’s
performance. Correct is a binary variable, which indicates if the subject marked all
lines correctly. Its addition to the model allows differences between those giving
correct and incorrect answers to be examined separately.

The single question-related variable captures the order in which the subject
performed the overall experiments. This variable, Waldo First, indicates whether this
experiment or the next experiment, the SAT experiment, was presented first to the
subject. There is a possibility of learning effects, especially among the novices (non-
programmers) who are seeing the treatment for the first time, and of subject fatigue.
Half of the subjects completed Where’s Waldo first, while the others completed the
SAT experiment first.

The following relate to demographic information. These variables include those
used for the Applet-cloud experiment (in Section 4.2). In addition, another variable
is derived from a question answered after completing the Applet-cloud experiment.
The subject was asked to assess his or her own behavior on a scale from 1 (“all
speed, no precision”) to 5 (“all precision, no speed”) to ascertain whether he or she
favored speed or precision during the Applet-cloud experiment, which is referred to
as the Speed Question. The Speed Question was used along with the time taken
to answer the question as explanatory variables. For the Where’s Waldo study, the
resulting variable, Time Answering Speed Question, is significant and considered to
be demographic information.

5.3 Distractor Analysis

Distractor analysis on the Where’s Waldo data reveals that there are few distrac-
tors (about 1.5%) selected, indicating that distractors may have been quite easy
to identify and ignore. Only one distractor selected, attacker health, was selected
disproportionately more when appearing in camel case, which may be due to the
fact that for the camel-case style the ‘r’ and ‘H’ in attackerHealth ‘rH’ visually
look a bit like the ‘d’ from the correct answer, attackedHealth. However, in the
underscore attacker_health the ‘r’ and ‘h’ are kept separate. This difference implies
that problems may arise when code is written in camel case due to the proximity of
the two middle letters.
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5.4 Statistical Models

Only the performance and efficiency hypotheses were considered for this study.
Thus, four models were constructed in pairs. The first model of each pair includes
only Style, while the second includes other explanatory variables. Neither response
variable is binary or ordinal; thus, linear mixed-effects regression models are fit to
the data.

For the performance hypothesis, the first two models consider the response
variable Missed Lines. Overall, the average number of missed lines when using
identifiers written with underscores was 0.72 (Std Dev = 1.31) as compared to only
0.56 (Std Dev = 1.06) when using camel casing. Statistically, the model built using
only Style finds this difference significant (p = 0.0293) with camel casing leading
to an estimated 0.24 fewer missed lines, which is slightly larger than the difference
between the raw averages. However, in practical terms, this is only a 1.6% difference.

The complex model for Missed Lines is built using the remaining explanatory
variables and their interactions with Style. Elimination of non-significant terms
produces the model shown in Table 9. Discussion of its parameter estimates begins
with those involving Style, in this case the interaction Style * Correct. This term
enables the model to provide different parameter estimates when modeling the
number of Missed Lines for subjects who correctly identified all the lines from those
who did not. By definition, the number of missed lines is zero when a subject is
correct; thus, interactions with Correct always include an essentially horizontal line
capturing the case when Correct is true. When Correct is false, the model predicts
more missed lines for underscore than for camel case. However, in practical terms,
the effect is very small. The slight edge afforded camel-case identifiers may come
from the visual difference created by the capital letters. Although as the distractor
analysis reveals, very similar camel-case identifiers can cause confusion.

The remaining parameter estimates do not concern Style. Given the lack of
interactions, Training can be discussed independently. For each unit increase in
Training, there are 0.13 fewer missed lines, which is a 0.87% decrease in the number
of missed lines. Thus, overall subjects perform better, but only slightly better with
increased Training. Next, from the interaction of Waldo First and Correct, when
Correct is false, subjects who completed the Waldo study before the SAT study were
likely to have fewer misses. This is most likely an indication of subject fatigue. Finally,
none of the variables identifying the question are significant, which indicates that
attributes distinguishing the fragments (e.g., such as code density) do not affect the
results.

Table 9 Waldo model for
Missed Lines

Variable Estimate p-value

Intercept 2.3356 <0.0001
Style −0.4379 0.0019
Correct −2.0814 <0.0001
Style * correct 0.4509 0.0150
Waldo first −1.1900 0.0002
Training −0.1300 0.0310
Correct * Waldo first 1.1951 0.0008
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Table 10 Waldo model for
Time Scanning Code when
subject is correct (ASQ
abbreviates Answering Speed
Question)

Variable Estimate p-value

Intercept 6040.67 0.0011
Style 5314.89 0.0105
Waldo first −3941.78 <0.0001
Time on ASQ 344.64 0.0015
Time on demographics 250.19 <0.0001
Style*Time ASQ −279.46 0.0012

For the efficiency hypotheses, the second two models consider the response
variable Time Scanning Code and are built from the subset of the data with no
missed lines to avoid cases where a subject was quick at the expense of correctness.
For subjects that did the task correctly, the average number of seconds spent working
on the task is 17.2 (Std Dev = 68.5) for the underscore and 15.9 (Std Dev = 61.8) for
camel case. The statistical model that includes Style as the only explanatory variable
finds that Style is marginally significant (p = 0.0692) and indicates that camel case
takes 1.2 fewer seconds. Practically, this is about a 7% difference, which becomes
more significant with increased frequency of the task.

The complex model for Time Scanning Code is built using the remaining explana-
tory variables and their interactions with Style. Elimination of non-significant terms
produces the model shown in Table 10. Discussion of its parameter estimates begins
with those involving Style, in this case the interaction Style*Time Answering Speed
Question. This term shows that for the underscore Style more time answering the
Speed Question leads to more time spent on the task. However, for camel case, the
opposite is true. More time on the Speed Question leads to less time on the task. This
result is somewhat counter intuitive. It may be that for the underscore Style, one’s
personal reading speed has a greater impact. However, for the camel-case Style, the
visual cues from the capital letters are more helpful to the slower readers.

The remaining parameter estimates do not concern Style. Both are free from
interactions and thus can be discussed independently. First, subjects that performed
Waldo First, were 3.9 s (just over 20%) faster, which suggests that fatigue is a factor
accounted for by this term. Second, from Time on Demographics, subjects that take
more time to read and fill in demographic information are slower at the task. This
term helps to account for subject reading speed differences.

5.5 Discussion

Performance Hypothesis—Style affects the number of Missed Lines

Support for Performance Hypothesis is found in the first two models where Style
is significant; thus, the null hypothesis can be rejected. In both models camel-case
identifiers lead to greater accuracy.

Efficiency Hypothesis—Style affects the Time Scanning Code

Support for Efficiency Hypothesis is found in the final two models where Style is
significant; thus, the null hypothesis can be rejected. In both models camel case leads
to lower Time Scanning Code. From the complex model the benefit is greater for
slower readers.
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Summary of Results

This experiment lends more evidence to the observation that camel casing produces
more accurate results. In particular, those subjects that have training are more
accurate on this task. In addition, the task can be accomplished more quickly when
the identifiers are in the camel-case Style, especially for slower readers. In regard
to Research Question 1, the Where’s Waldo study reinforces the affirmative answer
found in the Cloud study: Style impacts readability. Given that this experiment has a
more realistic setting, it represents the first step down a path of increasingly complex
comprehension tasks.

6 SAT Study

Although the Where’s Waldo study more closely represents a task carried out by
engineers, it does not require significant comprehension to be successful. Turning
from readability to Research Question 2, Style’s impact on comprehension is now
investigated. Three experiments reflect an increasing demand for comprehension.
The first considers Style’s impact on natural-language reading comprehension using
SAT-style questions in which subjects read a passage on a topic and then, as on the
SAT exam, answer two comprehension questions. This choice allows the study to
use comprehension questions that have been thoroughly vetted: Gates-MacGinitie
Reading Tests (MacGinitie et al. 2000) has released passages and related compre-
hension questions used from 1960 until they were retired in 1970. This experiment
attempts to isolate Style’s impact on a traditional natural language comprehension
problem: a setting almost completely divorced from programming.

6.1 Experimental Design

The design of the SAT study is centered around the construction of two passages.
After reading each passage the subject answered two multiple-choice comprehension
questions. The questions were presented in the same order as used in the original
SAT exam. The first passage is a paragraph from 1966 about pulsars. It contains
101 words and was given a Flesh-Kincaid Grade Level (a measure of comprehension
difficulty when reading academic English) of 13.0 by Microsoft Word. This indicates
a fairly difficult passage. The second passage is a paragraph from 1960 about John
Quincy Adams. The original paragraph contains 127 words with a Flesch-Kincaid
Grade Level of 9.4. The order of the two passages was randomly chosen to mitigate
learning effects.

To introduce Style, two to five word sequences in the text of each passage were
rewritten with camel casing or underscores. The words agglomerated were noun
and verb phrases and thus provided sensible groupings. The questions retained
traditional spacing. For example, the final sentence of the pulsar question is “Such a
radio beam, striking the earth with each revolution of the neutron star, can account
for the observed radio frequency pulsations” while the Adams passage includes the
sentence “All day neighbors traveled the road in front of the Adams farmhouse,
retreating from the expected attack.” In the study a subject would have seen either
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“Such a_radio_beam, striking_the_earth with each_revolution of the_neutron_
star, can_account for the_observed_radio_frequency_pulsations”

and

“AllDay neighbors traveledTheRoad in front of theAdamsFarmhouse, retreat-
ing from theExpectedAttack”

or

“Such aRadioBeam, strikingTheEarth with eachRevolution of theNeutronStar,
canAccount for theObservedRadioFrequencyPulsations”

and

“All day neighbors traveled the road in front of the_Adams_farmhouse,
retreating from the_expected_attack”

Using traditional SAT comprehension questions, this experiment mirrors work
in cognitive psychology (e.g., that of Epelboim et al. 1997 where various fillers
such as letters replace inter-word spaces). It uses manipulated SAT paragraphs and
accompanying comprehension questions to analyze the effect of different inter-word
fillers on readability. If the results from cognitive psychology hold for this study,
there should be little impact from the insertion of underscores, while camel case
should slow the speed at which a subject can read the paragraph.

The SAT experiment was laid out around the two questions. Each question
consisted of four screens. The first screen was used for preparation. On the second
screen, a paragraph appeared in one of the two styles. On the third screen, the
first comprehension question appeared. Subjects were required to select one of
four options to answer the question. The remaining three options serve as dis-
tractors. Then, the subject clicked on a button to advance to the second ques-
tion. The fourth screen contained the second multiple-choice question with four
possible answers. Again, the subject was instructed to click a button to complete
the task.

The first group of subjects in Table 1 (Group 1) completed this experiment, half
did so immediately after the Applet-cloud experiment and the other half did so after
also completing the Where’s Waldo study. The reason for the two orders was to
mitigate the impact of learning effects and fatigue. In the SAT study subjects first
performed a practice question and then the two study questions in the same order.
The Style in which the paragraph appeared was varied, so approximately half the
subjects saw the first question using camel case and the second using underscores,
while the other half saw the reverse.

6.2 Variables

The variables collected during the SAT experiment include two response variables
and several explanatory variables. The response variables capture correctness and
time. The correctness variable Number Correct is a count of the number of multiple
choice comprehension questions the subject answered correctly. The value of this
variable can be zero, one, or two. The time related variable Paragraph Read Time
records the amount of time the subject spent reading the paragraph distorted with
underscore or camel cased phrases.
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In this experiment, the primary explanatory variable is Style. The remaining
explanatory variables came from three sources: the questions, the subject’s per-
formance, and the demographic information. There is one variable relating to the
passage Passage Id. There are only two passages, so this variable captures all
the differences between the passages including the passage difficulty. In addition,
there are two performance related explanatory variables Time Answering Speed
Question, which is discussed in Section 5.2 and the Speed Question, which is the
answer supplied to that question. The remaining variables come from demographic
information. Training is discussed in Section 4.2. In addition, the variables Gender,
Age, and Years Worked are also included. The variable Years Worked was collected
in response to the query “Years of computer science related work experience”.

6.3 Distractor Analysis

An item analysis was conducted on the comprehension questions related to each
SAT passages to see how individual items functioned. The distractors are the incor-
rect answers to each of the comprehension questions. There are three distractors
per question. First, the number of questions answered correctly for each passage
was examined. Subjects answered more questions correctly on the Adams passage
(mean = 1.45) than the Pulsar passage (mean = 0.99). A look at the individual
questions shows that the second Pulsar question was more difficult than the other
three with the correct answer only being selected 33% of the time. The first Adams
question was the easiest, being correctly answered 80% of the time. These percent-
ages indicate the range of question difficulty on the test. Although it is clear that
some incorrect responses were selected by a disproportionate number of subjects, a
subject was not more likely to choose a particular wrong answer because she read the
passage in a particular Style.

6.4 Statistical Models

Only the performance and efficiency hypotheses were considered for the SAT study.
Thus, four models were constructed in pairs. The first model of a pair includes only
Style, while the second includes the additional explanatory variables. For the SAT
experiment, the response variables are Number Correct and Paragraph Reading
Time. For the response variable Number Correct, there are only three different
values, so it is considered an ordinal variable and was modeled using the Proportional
Odds Model. The response variable Paragraph Reading Time was modeled using
linear mixed-effects regression models.

For the response variable Number Correct, the average number of questions
answered correctly is 1.22 when reading a paragraph in both the underscore Style
(Std Dev = 0.77) and the camel-case Style (Std Dev = 0.75). Given that the means
are identical, the statistical model that includes only Style does not show Style as
significant when predicting the odds of the number of correct answers (p = 0.9538).

The complex proportional odds model for Number Correct is built using the
remaining explanatory variables and their interactions with Style. Elimination of
non-significant terms produces the model shown in Table 11. Discussion of its para-
meter estimates begins with those involving Style, which means its three significant
interactions. For the interaction Style*Time on Demographics, there is no significant
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effect of Time on Demographics on Number Correct for the underscore Style;
however, for the camel-case Style, the log-odds effect of Time on Demographics
on Number Correct is 0.000525 − 0.06243 = −0.061905. Thus, for camel case, a
millisecond increase in Time on Demographics leads to an odds ratio of 0.940 for
Number Correct. Thus, spending more time on the demographic page indicates a
lower chance of more correct answers for the camel-case Style. The greater time
could indicate that slower readers are having to work harder with the camel-case
Style, which impacts their ability to correctly answer comprehension questions. For
the interaction Style*Age, the effect (log-odds) of age for underscore is 0.2635
while the effect of Age for camel case is 0.2635 + 0.3157 = 0.5792, and these
effects are significantly different. The odds ratios are 1.302 and 1.785. Therefore,
increasing Age, perhaps because of the greater or more varied experience, leads to
a greater increase in odds of correctness for camel case than it does for underscore.
Finally, for the interaction Style*Training, the effect of Training for underscore is
0.4868 (p = 0.0559), which has marginal significance. The odds ratio is 1.63 for
underscore. Thus, a unit increase in Training leads to a 63% higher odds of correct
answers for underscore. The interaction of Style*Training has a highly significant
parameter (−0.9006 with a p-value of 0.0063). This reveals that the effect of Training
is significantly different for camel case than for underscore. A unit increase in
Training leads to the odds of a correct answers being 34% lower for camel case.
This indicates that computer science training is not as helpful to performance on
comprehension questions when the paragraph includes camel-cased phrases, perhaps
because those with training are more distracted by the unusual format of the words
in the paragraph.

The remaining parameter estimates in Table 11 do not concern Style. They include
Passage Id, which has a positive parameter estimate of 1.3087, so the cumulative
odds ratio is e1.3087 = 3.70. Therefore, the Adams passage has higher odds for higher
values of Number Correct. This observation indicates that the paragraph was easier
to comprehend for the subjects and agrees with the lower Flesh-Kincaid Grade Level.
Second, Speed Question has a negative parameter estimate (−0.4603), the odds
ratio is e−0.4603 = 0.63. Thus, a subject indicating a greater preference for speed over
precision has lower odds for higher values of Number Correct. It is interesting that
this personal preference on a game-like experiment carries over to ones performance

Table 11 SAT model for
Number Correct

Variable Estimate p-value

Intercept0 4.2102 <0.0001
Intercept1 6.5270 <0.0001
Style −3.0374 <0.0001
Passage Id 1.3087 <0.0001
Paragraph read time 0.000022 0.0122
Speed question −0.4603 0.0086
Time on demographics 0.000525 0.9823
Training 0.4868 0.0559
Age 0.2635 <0.0001
Style*time on demographics −0.06243 0.0445
Style*training −0.9006 0.0063
Style*age 0.3157 <0.0001
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in a reading comprehension experiment. Finally, with regards to Paragraph Reading
Time, the parameter estimate is 0.000022 per millisecond; therefore, after converting
to seconds, the odds ratio is 1.02 per second. Thus, increasing reading time leads to
high odds for Number Correct.

The second two models consider the response variable Paragraph Read Time.
Overall, the average number of seconds spent reading the paragraph in the under-
score Style is 44.4 (Std Dev = 19.7) compared to 47.1 (Std Dev = 21.1) when the
paragraph is in the camel-case Style. The statistical model that includes Style as
the only explanatory variable finds that Style is marginally statistically significant
(p = 0.0868). Subjects can read underscore paragraphs 2.7 seconds faster, which is
consistent with other reading experiments (Epelboim et al. 1997). From a practical
perspective, 2.7 s is roughly a six percent difference in time which, although small,
could have significant impact if the task was performed frequently.

The complex model for Paragraph Read Time is built using the remaining ex-
planatory variables and their interactions with Style. Elimination of non-significant
terms produces the model shown in Table 12. Discussion of its parameter estimates
begins with the two involving Style. First, after accounting for other terms, when

Table 12 SAT model for Paragraph Read Time with interactions broken out

Variable Number Correct Passage Id Estimate p-value

Intercept 75.14 .9936
Style −2730.04 0.4724
Passage Id Pulsar 3101.70 0.5620
Passage Id Adams 0 –
Number correct 0 −5524.78 0.0535
Number correct 1 2385.14 0.2911
Number correct 2 0 –
Style*number correct 0 1401.88 0.7023
Style*number correct 1 −6390.97 0.0354
Style*number correct 2 0 –
Time answering speed 1410.92 <.0001

question
Speed question 5377.72 0.0011
Time of demographics 371.01 0.0271
Training −160.88 0.9246
Gender 6138.57 0.0323
Years worked 2909.25 0.0005
Style*Time answering 492.34 0.0352

Speed question
Time answering speed Pulsar −490.87 0.0368

Question*Passage Id
Time answering speed Adams 0 –

question*Passage Id
Speed question*Passage Id Pulsar −3419.91 0.0037
Speed question*Passage Id Adams 0 –
Training*Passage Id Pulsar 2703.56 0.0265
Training*Passage Id Adams 0 –
Years worked*Passage Id Pulsar −1945.00 0.0012
Years worked*Passage Id Adams 0 –
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Number Correct is 0 or 1, there is no statistical difference between the underscore and
camel-case Style; however, when a subject answers both comprehension questions
correctly, the underscore Style takes significantly less time. For the interaction
Style*Time Answering Speed Question when Style is underscore, the effect of Time
Answering Speed Question on Paragraph Read Time is 1.4 s or about three percent.
When Style is camel case, the effect is 1.9 s or about 4 percent. In both cases, as Time
Answering Speed Question increases, so does the Paragraph Read Time, which
indicates that a subject’s personal reading speed partially explains the Paragraph
Read Time. Given that the effect is larger for camel case than for underscore,
subjects have a greater increase in reading time for the camel-case Style. Both
interactions indicate that Paragraph Read Time is lower for the underscore Style.

6.5 Discussion

Performance Hypothesis—Style af fects the Number Correct

While the simple model for Number Correct does not include Style, it is part of three
significant interactions in the complex model. In this model, the variables Age and
Training are somewhat correlated (r = 0.438) with greater Training accompanying
greater Age. Having both increase together leads to a higher chance of correct
answers for underscore. Furthermore, for underscores, an increase in either Age or
Training leads to higher odds of Number Correct. More importantly, for the camel
case Style, the effects of the two variables are opposite, which means one is acting as
a dampening factor for an over-estimate by the other. This opposing effect together
with slower readers having a lower chance of more correct answers for the camel-case
Style supports the rejection of the null hypothesis.

Efficiency Hypothesis—Style af fects the Paragraph Reading Time

Support for the Efficiency Hypothesis is found in both models where Style is at least
marginally significant; thus, the null hypothesis can be rejected. The simple model
finds that subjects reading paragraphs written in the camel-case Style take 2.7 s (six
percent) longer. When considering the more complex model, restricted to correct
answers, camel case leads to longer Paragraph Reading Time than underscore. In
addition, for slower readers having a higher Time Answering Speed Question, camel
case again leads to longer Paragraph Reading Time.

Summary of Results

The SAT experiment represents a more complex comprehension task than the prior
two experiments. Providing an affirmative answer to Research Question 2, Style
has a significant impact on comprehension where the use of camel casing reduces
performance and also slows subjects down, especially slower readers. This result is
the opposite of most of the results from the first two studies where camel casing was
favored. To disambiguate these two conflicting results, the next two studies consider
problems that require greater comprehension (as in the SAT study) but in a software
context (as in the Where’s Waldo study and Cloud study experiments).
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7 Eye Tracker Code Study

Building on the SAT experiment’s reading of natural language, the fourth study
(Tracker-code) considers reading code. The study’s two goals investigate Style’s
impact on the Visual Effort required while reading code and its impact on short term
memory demand. These two goals relate to Research Question 2.

7.1 Experimental Design

The study involves analyzing the C++ code stimulus shown in Fig. 4, which is pre-
sented in 11-point Courier New font. The code stimulus includes two functions, main
and matrixSum, with six and fifteen identifiers, respectively. Both Styles are present
on the same stimulus. While identifiers occurred multiple times, the frequencies are
closer to that of the SAT study than the higher repetition found in the readability
studies. This study was performed after the Tracker-cloud experiment on the same
day. The same subjects (Group 3 from Section 2.3) participated.

Subjects were verbally instructed to study and memorize the code so that they
could reproduce it and answer questions regarding it. They were allowed to study it
for as long as they wanted. While doing so, eye gaze data (fixations) were recorded.
After the subjects were done studying the code, the next screen (the identifier-recall
stimulus shown in Fig. 5) asked participants to verbally state the identifiers that they

Fig. 4 Code stimulus for the eye tracker code study
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Fig. 5 Identifier-recall
stimulus for the eye tracker
code study. The correct
answers in Fig. 5 are colSum,
vector2D, c_sum, and arr_2D

remembered seeing in the code. This screen also included five distractors. The four
correct choices included two camel-case and two underscore identfiers. Visually,
each identifier on both screens was an area of interest enclosed within a rectangle
(not visible to the subject).

7.2 Variables

Two response variables were collected: Recall Correctness and Visual Effort. Recall
Correctness refers to the number of identifiers correctly recalled. Visual Effort, as
described in Section 4.2, includes eye fixations and their durations within specific
areas of interest. In this case, the areas of interest were bounding boxes around
the identifiers with some extra padding to compensate for small drifts. The main
explanatory variable is Style. The three other explanatory variables considered are
Recall Time, the amount of time taken to answer the multiple choice question, Code
Reading Time, the number of milliseconds spent reading the code stimulus, and
Experience, as defined in Section 4.2.

7.3 Experimental Hypotheses

Four hypotheses are considered. In addition to the Performance Hypothesis, two
concern Visual Effort and one deals with Experience and its interaction with Recall
Correctness. The Efficiency Hypothesis, which would be based on recall time is not
considered because the total recall time for the identifier-recall stimulus includes
times for both camel case and underscore identifiers in this experimental setup.

Hypothesis Code 1:

H0 Visual Effort while reading code or recalling identifiers is the same regardless
of the Style of the identifier.

HA Visual Effort while reading code and recalling identifiers is affected by iden-
tifier Style.
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This hypothesis considers eye fixations and durations for both the code and iden-
tifier-recall stimuli. A style that requires less Visual Effort is more useful than one
that requires greater effort.

Hypothesis Code 2:

H0 The effect of Style on Visual Effort is independent of Experience for reading
code or recalling identifiers.

HA The effect of Style on Visual Effort lessens due to Experience for reading code
and recalling identifiers.

This hypothesis considers if Style’s influence on Visual Effort diminishes with Expe-
rience. Support would be found in an interaction between Style and Visual Effort.

Hypothesis Code 3:

H0 The effect of Style on Recall Correctness is independent of Experience.
HA The effect of Style on Recall Correctness lessens due to Experience.

This hypothesis considers if Experience can overcome differences in Recall
Correctness caused by Style. Support would be found in an interaction between
Style and Recall Correctness.

7.4 Distractor Analysis

A distractor analysis was performed on the eye-tracker data to determine if any of
the five incorrect answers were selected more or viewed proportionately longer than
the other answers. The distractor that produced the most fixations and greatest gaze
duration was matrix_sum, which was also the longest choice among all the identifiers.
It could be that the length of this item made it more difficult to process; however, this
item did not produce a greater gaze per fixation than the other items. Thus, it may
be that the greater length made the item more apparent and thus more likely to be
fixated upon, even if only briefly. In all, other than matrix_sum, the distractors were
not fixated upon or gazed at more than the correct answers.

7.5 Statistical Models

Statistical models are generated in pairs with the simple model including Style as
the only explanatory variable and the complex model initially including additional
explanatory variables and their interactions with Style. In total, ten models are
generated, two for each of the following: Recall Correctness, the fixation counts on
the identifier-recall stimulus, fixation counts on the code stimulus, fixation durations
on the identifier-recall stimulus, and fixation durations on the code stimulus.

None of the subjects gave completely correct answers. On average, one camel
case and one underscore identifier were recalled correctly. One possible explanation
for this rather low recall is the visual confusion that occurs when similar camel
case and underscore versions of an identifier (e.g., c_sum and colSum) are present
in the same code fragment. The statistical model that includes Style as the only
explanatory variable shows that Style does not significantly affect correctly recalling
the identifiers (p = 0.451).
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Table 13 Complex model for
Recall Correctness

Variable Estimate p-value

Intercept 0.875 0.001
Style 0.375 0.251
Experience −0.964 0.007
Style*experience 1.232 0.013

The complex model for Recall Correctness initially includes the other explanatory
variables and their interactions with Style. After elimination of non-significant
terms, the resulting final model includes a significant interaction between Style and
Experience. The final model is shown in Table 13. and the interaction is pictured
in Fig. 6. In this model, two pairwise comparisons are significant: underscores
for experts versus beginners (p = 0.007) and camel-casing versus underscores for
beginners (p = 0.015). These differences are clearly visible as large vertical gaps in
the interaction plot. However, it is important to realize that, statistically, the two
points for experts are not different. In particular it is tempting to observe that camel
case for beginners lies between the two expert points. None of these differences is
statistical significant. In summary, beginners do better with camel case, and experts
do better than beginners when using underscores.

Visual Effort is measured based on the areas of interest defined on the code
stimulus and the identifier-recall stimulus. A total of eight models were generated.
The simple models use only Style as the explanatory variable. The complex model
uses all six variables including Recall Correctness and all the interactions with Recall
Correctness and Style. In both the simple and complex models for the code stimulus
and the identifier-recall stimulus, Style is not significant.

The design of this experiment was within-subjects (each subject was asked the
same question and tested on both styles). This design supports comparison of each
individual’s performance on the camel-cased and underscored version of similar

Fig. 6 The interaction of Style
and Experience when
modeling Recall Correctness
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identifiers using the non-parametric Wilcoxon paired test. Two pairs of similar
identifiers, row_sum and colSum, and c_sum and rSum are compared for differences
in Visual Effort. To normalize for the number of appearances of each identifier, the
fixation counts for each are divided by the number of appearances. Statistically,
row_sum requires significantly more fixations (5.3 more out of a maximum 23.7
fixations on average) than colSum (1-tailed p = 0.007), its average gaze duration
was 704 ms (out of a maximum 3,747.2 ms of gaze duration on average) longer than
that of colSum (1-tailed p = 0.005). No significant differences were found between
c_sum and rSum. One possible reason could be that the placement of identifiers
might affect Visual Effort needed. The first pair (row_sum and colSum) appeared in
the main function, while the second pair (c_sum and rSum) appear in the method
matrixSum, which may have accounted for the discrepancy.

7.6 Discussion

Performance Hypothesis—Style af fects the Recall Correctness

While Style is not significant in the simple model, an interaction with Experience is
significant in the complex model. The significance indicates that Experience affects
how Style impacts Recall Correctness. In particular, beginners with low experience
tend to do better with camel cased identifiers versus underscored ones. On the
other hand, experts do better with underscored identifiers compared to beginners.
Therefore, there is limited support for rejecting the null hypothesis when Experience
is taken into account.

Hypothesis Code 1—Style af fects Visual Effort while reading or recalling identif iers

There is no evidence to reject the null hypothesis in the models for Visual Effort
where Style is not significant. The pairwise comparison does find that in one instance
the use of underscores requires greater Visual Effort (in both fixation count and gaze
duration).

Hypothesis Code 2—The ef fect of Style on Visual Effort, lessens due to Experience

Because Experience’s interaction with Style is not significant in the models for Visual
Effort, there is insufficient evidence to reject the null hypothesis.

Hypothesis Code 3— The ef fect of Style on Recall Correctness lessens due to
Experience

Because the interaction between Style and Experience in the complex model for
Recall Correctness is significant, the null hypothesis can be rejected. In particular,
for beginners Recall Correctness is negatively impacted by the presence of un-
derscores. Thus, the camel-cased style emerges as the better choice. Finally, while
experts apparently can compensate for the difference seen in the beginners, such
compensation might require effort that could be better spent elsewhere.

Summary of Results

Style continues to play a role in Performance (in this case Recall Correctness).
Taking into account Experience, underscores hurt the performance of beginners
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(Hypothesis Code 3). From the Visual Effort models, overall, there was no significant
difference except in the pairwise comparisons where the underscored identifier
row_sum takes significantly more and longer fixations than the camel cased identifier
colSum.

Considering Research Question 2, when given a code comprehension task (i.e.,
studying code well enough to be able to replicate it or answer questions with respect
to it), the results for Hypothesis Code 1 and Code 2 indicate that subjects may not
actually retain the Style in which they saw the identifiers.

8 Read Aloud Study

Like the prior study, the Read-aloud study asks subjects to read a method. However,
unlike the prior studies that focus on subtasks of comprehension within source code
such as readability and memory recall or comprehension of natural language text, in

public double percent long words(String input text)

int char count = 0;
int word count = 0;
int long word count = 0;

String modifi ed input text = input text + ” ”;
int current letters in word = 0;
char current character;

Quadrant 1

for (int k=0; k ¡ modifi ed input text.length(); k++)

current character = get nth character(modifi ed input text, k);
char count++;
if ((current character = A ) && (current character = Z )

(current character = a ) && (current character = z ))

current letters in word++;

Quadrant 2

else

if (current letters in word 0)

word count++;
if (current letters in word 6)

long word count++;
current letters in word = 0;

Quadrant 3

return 100.0*long word count/word count;
Quadrant 4

Fig. 7 First method in the Read-aloud experiment shown in the underscore style. The quadrants
were used to assess regions of the code
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this fifth study, the task is a true software engineering comprehension task, where
subjects are asked to summarize a method in source code. Subjects from Group 2
(see Section 2.3) considered two methods, which were written by the authors to be
comprehensible to students after taking two semesters of Java programming. They
were engineered to have a purpose that could be discerned by the subjects. These
methods were designed to be code analogues to the SAT questions. The first method,
appearing in Fig. 7, calculates the percentage of long words in its input. The second
method detects a full house in a Yahtzee roll and appears in Fig. 8.

8.1 Experimental Design

The Read-aloud study was designed to investigate Style’s impact on a subject’s
comprehension, observed by asking the subject to verbally summarize a block of
code. The choice of a verbal study may impact the results but is a pragmatic approach
to the design because it mirrored a tutorial session that the students were familiar
with and alleviated the need to properly vet SAT quality comprehension questions.

public boolean fullHouse(int [] yahtzeeRoll)

int numberOfDice = yahtzeeRoll.length;
int dieOneValue = yahtzeeRoll[0];
int dieTwoValue = -1;

Quadrant 1

for (int dieIndex=1;
dieIndex < numberOfDice && dieTwoValue == -1;
dieIndex++)

if (yahtzeeRoll[dieIndex] != dieOneValue)

dieTwoValue = yahtzeeRoll[dieIndex];

Quadrant 2

int dieOneCount = 0;
int dieTwoCount = 0;

for (int dieIndex=0; dieIndex numberOfDice; dieIndex++)

if (yahtzeeRoll[dieIndex] == dieOneValue)

dieOneCount++;

else if (yahtzeeRoll[dieIndex] == dieTwoValue)

dieTwoCount++;

Quadrant 3

return dieOneCount == 2 && dieTwoCount == 3
dieOneCount == 3 && dieTwoCount == 2; Quadrant 4

Fig. 8 Second method in the Read-aloud experiment shown in the camel-case style. The quadrants
were used to assess regions of the code
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The other alternative would be to ask for the response as an essay question, which
also has its drawbacks. For example, the subjects were not familiar with the particular
mode of response.

The study presented subjects with a page of source code written in Java. Subjects
were first given as much time as they needed to familiarize themselves with the code.
Before studying the code, they were instructed that “when you are ready, explain
in detail what it does. For the level of detail, pretend that you are explaining it to
a freshman (first year undergraduate).” To begin, the subjects were given a short
example shown in Fig. 9 and after explaining it, a sample explanation was distributed
to help the subjects understand what was meant by a “source code summary”. The
summary is as follows

The method maximum takes an integer array and returns an int. It first checks
if the array is empty. If so, zero is returned. Otherwise, ‘max’ is assigned the
first element of the array. The code then iterates through the rest of the array
checking if ‘max’ is less than the current element. If so, it replaces max with that
element. Finally, the method returns the maximum value from the array.

After training, subjects studied and then explained the two methods shown in
Figs. 7 and 8. Each subject saw the string-processing method shown in Fig. 7 first
and then the Yahtzee method shown in Fig. 8 second. Half of the subjects saw
the first method written with identifiers in the camel-case Style while the other
half saw the underscore Style. The second method was shown in the opposite
style.

The layout of this study has subjects sit at a table with a moderator. An audio
recording was made of all interactions. From this recording, timing information was
gathered. Audio files containing the summaries were distorted to provide anonymity
to the subject. Subjects completed this experiment within three weeks of having
participated in Applet-cloud, Where’s Waldo, and SAT experiments.

This experimental design does not lend itself to distractor analysis because of the
free form nature of the answers. Therefore, no such analysis was performed for this
study.

Fig. 9 Example method in the
Read-aloud experiment

public int maximum(int [ ] array)

if (array.length == 0)

return 0;

int max = array[0];

for (int i = 1; i array.length; i++)

if (m

m

ax array[i])

ax = array[i];

return max;
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8.2 Variables

The variables collected during the Read-aloud experiment include two response
variables, Thinking Time and Quality Assessment, and several explanatory variables.
Thinking Time captures the amount of time that the subject spent reviewing the
code before summarizing it. Quality Assessment captures correctness, which was
assessed on a ten point Likert scale independently by two of the authors, using a
rubric designed for the task. The assessments were then averaged together using
an arithmetic mean. This assessment considered separately four quadrants of each
function as indicated in Figs. 7 and 8. The primary explanatory variable is again Style.
There are two significant explanatory variables, both relating to the question: Method
Id and Quadrant Id. The Method Id captures which of the two methods is considered.
The quadrants represent distinct concepts (e.g., initialization) within the code.

8.3 Statistical Models

As in the prior experiments, the models were constructed in pairs. The first model of
a pair includes only Style, while the second includes other explanatory variables. The
response variables are Quality Assessment and Thinking Time. In total, four models
are produced using linear mixed-effects regression.

The first two models consider the response variable Quality Assessment. The
average quality assessments was 7.5 (Std Dev = 2.29) for the underscore Style and
7.2 (Std Dev = 2.60) for the camel-case Style. The statistical model that includes
Style as the only explanatory variable shows that Style is not statistically significant
(p = 0.3048).

To account for other factors that might influence Quality Assessment, a complex
model including interactions with Style is built. As shown in Table 14, after the
elimination of non-significant terms, two terms remained: Method Id and Thinking
Time. After accounting for Thinking Time, the string-processing method leads to an
assessment whose score is 1.25 (17%) lower, on average, than that for the Yahtzee
method. After accounting for Method Id, a ten second increase in Thinking Time
leads to a 0.1 decrease in Quality Assessment. This trend reveals that the string-
process method was more difficult and that more thoughtful students, as measured
by Thinking Time, give slightly higher quality answers; however, at 1%, the difference
has little practical significance.

The second two models consider the response variable Thinking Time. Overall,
the average number of seconds spent thinking was 148.9 (Std Dev = 64.3) for the
underscore Style and 142.1 (Std Dev = 67.9) for the camel-case Style. The statistical
model that includes Style as the only explanatory variable shows that Style is not
statistically significant (p = 0.6129).

Table 14 Read-aloud model
for Quality Assessment

Variable Method Id Estimate p-value

Intercept 9.5962 <0.0001
Method Id String-processing −1.2535 <0.0001
Method Id Yahtzee 0 –
Thinking time −0.01108 0.0035
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To account for other factors that might influence Thinking Time, all non-
demographic explanatory variables described in Section 8.2 and interactions with
Style were included to build the model. After the elimination of non-significant
terms, one term remained: Quality Assessment, where a unit increase in Quality
Assessment for Quadrant 2 leads to a decrease of 8.9 s (6%) in Thinking Time
(p = 0.0148). Thus, more proficient subjects comprehended the second quadrant,
the key part of the method, more quickly.

8.4 Discussion

Performance Hypothesis—Style af fects the Quality Assessment

Both models for Quality Assessment show no support for the Performance Hypoth-
esis because Style is not significant in either model. Therefore, the null hypothesis
cannot be rejected. This study does not find Style having an effect on the compre-
hension of source code.

Efficiency Hypothesis – Style af fects the Thinking Time

Both models for Thinking Time show no support for the Efficiency Hypothesis
because Style is not significant. Therefore, the null hypothesis cannot be rejected.
This experiment does not show any effect of Style on the time it takes a programmer
to understand the source code of the four methods.

Summary of Results

In terms of Research Question 2, the lack of significance of Style is somewhat of
a surprise considering Style’s impact on readability found in the earlier studies and
its impact on comprehension as found in the SAT study. It may be that there were
too many confounding variables to isolate the effect of Style. For example, com-
paring means shows there is some difference between Styles, which a different test
instrument might capture. Alternatively, a larger subject pool could demonstrate that
this difference is not a random effect. Even without finding a significant difference
between the two styles, this study highlights that reading and comprehending natural
language is fundamentally different from reading and comprehending source code.

9 Threats to Validity

This section presents four main threats to validity: internal, external, construct, and
conclusion in separate sub-sections. Each section describes threats individually for
each study as well as threats that are common across more than one study.

9.1 Internal Validity

Internal validity refers to the degree to which conclusions can be drawn about the
causal effect of the explanatory variables on the response variables. One internal
threat applies to all studies. Statistical associations do not imply causation; although,
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given the underlying theory, it is reasonable to infer that differences in performance
are due to the explanatory variables considered. Other potential threats to internal
validity (e.g., history effects, attrition, and subject maturation (Sjøberg et al. 1993))
are non-issues given the short duration of the studies.

Of the threats that apply to only some of the studies, the most common are
learning effects. Because of the number of questions involved in Applet-cloud and
Tracker-cloud studies, learning effects may occur when subjects believe that they
have detected a pattern in the problems and attempt to exploit it. To help mitigate
this concern, the Applet-cloud experiment presented questions in a random order.
Due to the complexity of the eye tracker, the same was not possible in the Tracker-
cloud experiment. The Tracker-cloud experiment, unlike the Applet-cloud experi-
ment, uses a within-subjects design by asking the same subject to find an identifier
in both camel case and underscore styles. To mitigate learning effects, different but
similar phrases are used for each identifier style within each Code and Non-Code
phrase category. Analysis on the different phrases show no statistical difference
between the corresponding similar identifiers with the exception of full pathname
that seemed to be harder than its corresponding camel case version, startTime, which
hinders the underscore approach for 2-word code identifiers.

The Cloud study consists of two experiments, Applet-cloud and Tracker-cloud.
Specific threats include that different demographics are collected, which may pose
a threat to conclusions that combine results from the two studies. Different demo-
graphics were captured because of differences in the subject pools. Subjects in the
Applet-cloud study included both programmers and non-programmers whereas in
the Tracker-cloud only programmers, some with industrial experience, were used.
This lead to the need for slightly different demographic variables. For example,
Experience would be false for almost all subjects taking part in the Applet-cloud
experiment. Thus, rather than Experience, Training is captured. The threat to
internal validity here occurs when conclusions involving Training and Experience are
drawn from combining models from these two experiments. As noted in Section 4 no
head-to-head comparisons are made.

There is also the possibility of learning effects in the Where’s Waldo and SAT
studies, but in this case there is more an issue of experience with one part of the
experiment influencing the other. Randomization was used to help mitigate this
threat. Analysis of the impact of question order suggests the randomization acted
more as a control for fatigue than learning. Finally, there are two threats specific to
the Tracker-code study. First, the position of the identifiers may affect the eye-gaze
data. Second, the code shown used both camel-cased and underscored identifiers.
The first of these could be mitigated by randomizing the positions, while the second
was inherent in the design of the study.

In the case of the studies using an eye-tracker (i.e., Tracker-code and Tracker-
cloud), the use of a moderator can cause additional bias due to the observer or
Hawthorne effect. This effect could potentially cause subjects to modify their answers
because they are being studied regardless of the treatment factor. The purpose of the
moderator was to conduct a proper calibration of each subject and to ensure that the
eye tracker does not loose tracking of the eyes. Some people tend to move or rest
back in their chairs which causes the eye tracker to not track their eye movements.
The eye tracker is very forgiving but the head does need to be within a certain range
(head box). The moderator’s job is to alert the participant if tracking is lost, which
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did not occur often during this study. To avoid putting the burden of accurate data
collection on the participant, a moderator was used. It is highly unlikely that the
subject changed their answers because the moderator was in the room. There was
minimal interaction and virtually no face-to-face contact between the moderator and
subjects during the study; with each facing their own monitor screen. The moderator
in no way steered the subjects towards one answer or another.

The Hawthorne effect may also be present in the Read-aloud study where sub-
jects were expected to explain the source code to the moderator. The moderators
attempted to give the same positive non-verbal cues to all subjects regardless of the
answer. In addition to mitigate the effect, subjects were asked, at the end of the study,
to rate their comfort during the study on a Likert scale. Analysis of this data did not
uncover any significant evidence of a Hawthorne effect.

The use of verbal answers in the Read-aloud and eye tracker studies (Tracker-
code and Tracker-cloud), pose a social desirability threat, referring to the fact
that subjects change their answers to please the experimenter by improving their
measured performance. The subjects in the studies did not have any knowledge of
the hypotheses in the experiment. It would have been next to impossible for them to
guess where to perform better. Hence, this threat is not an issue.

9.2 External Validity

External validity, sometimes referred to as selection validity, is the degree to which
the findings can be generalized to other (external) settings. An external threat to all
studies uniformly is the assumption that phrases were read left-to-right. It is possible
that the results for those who learned to read top-to-bottom or right-to-left might
differ; however, the number of subjects in this study that did not learn to read left-
to-right is small (no more than 1 or 2).

In addition, for the Cloud study, there is a concern that right-to-left readers might
not look at other choices before they state the correct answer, if the correct answer
is to the right of the screen. The same threat applies to left-to-right readers if the
correct answer is to the left of the screen. To determine if the reading behavior on
screen plays a role, the gaze plots for each subject (for the Tracker-cloud experiment)
were analyzed. It was found that all clouds were examined by subjects to arrive at an
answer, thus mitigating the effect.

In the Applet-cloud experiment, selection bias exists if the the selected phrases
and distractors are not representative; thus, results may not accurately capture the
impact of Style on an engineer’s performance. Careful selection of phrases mitigates
the impact of such bias. In addition, the distractor analysis shows that no type of
distractors had any more or less effect than another. It is also possible that taking the
code out of context changes the reading process and, thus, the results are not indica-
tive of typical coding situations. Past research on reading natural language suggests
that this is not the case (see Section 10). Finally, selection bias is also possible in the
selection of subjects. A wide variety of students took part in the study. Based on the
demographics data, they represent a representative cross section of Loyola students.
Furthermore, the only demographic variable that was statistically significant in any
of the models was Training, which was controlled for in the selection of the subjects.
However, given that essentially all training was with camel casing, the Tracker-cloud
experiment mitigates this bias because subjects in that study were primarily trained
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on underscores. Finally, the untrained group represents two-thirds of the population,
which may mean that the study is under powered to detect all training effects. Thus,
for example, Hypothesis Cloud 1, may find support with a larger sample of trained
subjects; however, the statistical techniques can accommodate unbalanced data. The
drawback of fewer subjects can be an inability to distinguish between random chance
and a real difference in the population. For the Tracker-cloud experiment, the same
threats apply to the phrase selection as discussed in the Applet-cloud experiment.

For both Where’s Waldo and SAT, external validity is a concern with regards to
questions and subjects. In the Where’s Waldo experiment, source code was selected
that used similar variable names. Although such code exists in the wild, it may have
consisted of a disproportional number of identifiers. In addition, the selection of the
identifier for which to search may have introduced additional threats to validity.
The identifiers were selected to share words with other identifiers in the code in
an attempt to make the problem harder. In the SAT experiment, the subject matter
of the text may have introduced some threats to validity because the text may not
represent some average notion of natural language text. These studies have the same
threats to validity with regard to the subjects that the Applet-cloud experiment has.
Selection bias is also possible in the Read-aloud study. This selection bias comes from
both the questions and the subjects. The questions remain a significant threat as they
were generated by the authors. Although they did achieve the goal of making the
task tractable for the subjects, they did not lead to great differences in performance.
Although the subjects represent a fair cross section of Loyola Computer Science
students, these student may not represent the general community.

9.3 Construct Validity

Construct validity assesses the degree to which the variables used in the study
accurately measure the concepts they purport to measure. In the Applet-cloud ex-
periment, most of the explanatory variables (e.g., Length and Age) can be measured
precisely. This threat is only a concern for the variable Phrase Origin where the
authors’ assessment of a phrase’s origin may differ from subject perception because
of the assumption that phrases that originate in code will be less familiar to the
subjects who were non-programmers. This threat is a concern because it is difficult to
predict how familiar a given subject will be with a particular set of words. Choosing
domain terms used in source code helps the unfamiliar phrases to be truly unfamiliar
and thus helps address this concern. With respect to both eye-tracking studies,
because visual attention is related to mental processing of the information (Just
and Carpenter 1980), the measures derived from the fixation counts and durations
should be valid. Also, six measures for Visual Effort were used to avoid mono-
method bias. In the Where’s Waldo and SAT experiments, there was no threat to con-
struct validity because all variables were measured precisely (assuming participants
accurately reported their demographic data). In the Read-aloud experiment, there
were two variables that present concerns. The first is the response variable Quality
Assessment where two of the authors rated the responses for each quadrant. It is
possible that there was assessor drift as the range of responses became better known
and a difference in interpretation of the scale of the assessment. The assessments
were done in a single sitting to mitigate the former and extensive discussion was
conducted to mitigate the latter.
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9.4 Conclusion Validity

A threat to statistical conclusion validity arises when inappropriate statistical tests
are used or when violations of statistical assumptions occur. Because all of the studies
follow the same statistical modeling techniques, the same threat applies to all the
studies presented here. The models applied are appropriate for analyzing unbal-
anced, repeated-measures data, so that the conclusions drawn from the statistics
should be valid. In the Tracker-code study, the non-parametric Wilcoxon test was
used to compare the results of two identifiers in the pairwise comparisons.

10 Related Work

Related work on identifier names, source code readability, eye-tracking research
concerning source code and diagrams, and the psychological aspects of reading is
presented in this section. There is a large body of research in the field of cognitive
psychology on how people read natural-language prose and how they parse the words
and syntax. There is also research on how this information is structured and how to
determine the semantics of identifiers. This section covers some of the most closely
related works in the context of program comprehension.

10.1 Identifiers Names

Lawrie et al. (2006) conducted a large study on identifier names and showed that
actual words rather than abbreviations lead to better comprehension. Butler et al.
(2010) study the effect of identifier names on the quality of code. They found
that identifiers violating certain guidelines lead to lower code quality (more bugs).
Caprile and Tonella (2000) study the restructuring of identifier names and the
arrangement of individual words in identifiers. Binkley et al. (2009b) study the
effect of identifier length on the recall ability of programmers, showing that longer
names reduce correctness and take longer to recall. The results add to these findings,
because phrase length significantly interacts with identifier Style to have an effect on
performance.

10.2 Eye Tracking

A small number of eye-tracking studies have recently been done on how program-
mers comprehend UML class diagrams. Yusuf et al. (2007) conducted a study to
determine if different class diagram layouts with stereotype information help in
solving design tasks. Another study by Guéhéneuc (2006) uses an eye tracker to
investigate how designers answer two simple questions about modifying parts of the
diagram. They also study the effect of the presence of the Visitor pattern in class
diagrams (Jeanmart et al. 2009). Sharif and Maletic applied eye tracking to the effect
of layout of UML diagrams on understanding roles in design patterns (Sharif and
Maletic 2010b). These works do not investigate how programmers understand code
and identifier names. They do not address the issue of naming styles.

Porras and Guéhéneuc (2010) conduct a study using an eye tracker with 24
subjects on the efficiency of three design pattern representations in class diagrams.
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Three design pattern comprehension tasks were assessed: identifying pattern com-
position, design pattern roles, design pattern participation. Results indicate design
pattern representations that show stereotypes are more efficient for some design
comprehension tasks. Developer’s effort is measured using average fixation duration
and two derived measures: ratio of fixation count and ratio of fixation time. The
derived measures are based on areas of interest and areas of glance. The areas of
glance correspond to the distractors in the Tracker-cloud study. The average fixation
duration (AFD) is also used in the Tracker-cloud experiment. The Tracker-code
study uses the actual gaze duration instead of the average fixation durations because
the areas are much smaller and based on psychology research summations are
preferred in this context. The measures used in eye tracking studies are dependent
on the task: reading text vs. reading a diagram. The task in the studies here was
mainly reading. The tasks in Porras and Guéhéneuc (2010) relate to searching
and exploring relationships between classes in UML class diagrams. Determining
which metric is most appropriate for the different types of studies is still an open
issue.

Although many eye tracking studies relate to evaluating user interfaces (Beymer
and Russell 2005; Cutrell and Guan 2007; de Kock et al. 2009; Goldberg et al.
2002; Matsuda et al. 2009; Nakamichi et al. 2006), there are a few studies on how
programmers read and comprehend source code (Bednarik and Tukiainen 2006,
2008; Crosby and Stelovsky 1990; Uwano et al. 2006). Crosby and Stelovsky (1990)
study eye-gaze data of beginner programmers and expert programmers to determine
if experience has an effect on viewing patterns. Uwano et al. (2006) study eye viewing
patterns of five subjects while they detect defects in source code. Their recent work
focuses on multi-document review (Uwano et al. 2008). Bednarik and Tukiainen
(2006) study the comprehension of Java programs using eye tracking data on 18
subjects and call for more studies due to important behavior that can be revealed
using eye-tracking data. They expand their study on eye tracking by considering pair
programmers simultaneously (Sami et al. 2008). In addition, Bednarik and Tukiainen
(2008) also investigate debugging behavior of 14 subjects while they debug a program
in an IDE setting. The focus of this work is on debugging rather than identifier
naming styles and how they may impact debugging.

10.3 Psychological Aspects

In the field of cognitive psychology a number of investigations are relevant. New et
al. consider the impact of word length on lexical decision latencies (New et al. 2006).
They provide a general understanding of human lexical processing, which is then
built upon in this study to focus on computer science. The key finding was that words
with a length of 6–9 letters have the highest probability of being processed after
a single fixation. Their study is relevant because camel casing essentially produces
long words while the use of underscores does not because they are perceived as
spaces. Epelboim et al. (1997) conduct a study on the effect fillers have on reading
time. Spaces between words are filled with different fillers: Latin and Greek letters,
digits, and shaded boxes. They found that the type of fillers had a significant effect of
slowing reading speed anywhere between 10–75% depending on the filler. Shaded
boxes between words (similar to underscores) had the smallest effect on reading
time. Rayner et al. (1998) also show decrease in reading rate by approximately
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50% when fillers like x were used between words. The results in the Applet-cloud
experiment support the above findings because a significant improvement in Find
Time for underscores is shown. In light of this study, lexical decision latencies
for camel cased identifiers would be quite long because camel casing provides
insufficient separation (e.g., the identifier EqualsIgnoreCase is potentially read as
a sixteen letter word, which is well into the inhibitory range).

Epelboim et al. observe that some Asian languages (such as Thai or Japanese) are
written without spaces and that some Western languages (e.g., German and Dutch)
use spaces much more sparingly than the languages for which the popular space-
based word recognition theories were developed (e.g., English and French). Thus,
it appears that readers, even those initially exposed to space-rich languages, can
be trained to use something other than spaces to determine reading saccades. The
findings bear out this effect as training appears to help subjects read camel cased
identifiers more effectively than those who have had no training.

A number of researchers have investigated how identifiers relate to natural
language and describe the solution domain. They develop or model a lexicon of
words used in common across programs or for particular projects. Høst et al. analyze
Java method implementations and extract the meaning of the verbs used in the
method names (Høst and Østvold 2008). The resulting domain-neutral lexicon of
verbs represents the common usages across a set of programs. Caprile and Tonella
investigated building a standardized lexicon from the words found in identifiers and
then producing a grammar for the arrangement of these terms (Caprile and Tonella
2000). Deissenböck and Pizka present a formal model based on bijective mappings
between concepts and names for adequate identifier naming (Deißenböck and Pizka
2005). The model is based on the idea that within a given program a concept should
always be referred to by the same name. This work sets the stage for the cognitive
processes of reading programs.

11 Discussion of Results

The studies described in this paper address the impact of identifier Style on readabil-
ity and comprehensibility of source code. This section first summarizes the results
of the five studies (as highlighted in Table 15) and then discusses a number of
implications that arise from the findings. The two research questions are reiterated
below for convenience.

Research Question 1: Mirroring research on natural-language reading, does iden-
tifier style impact readability?

Research Question 2: Assuming a difference in readability, does identifier style
affect higher-level comprehension activities?

The first two experiments (Applet-cloud and Tracker-cloud) determine if Style
impacts readability at the syntactic but not semantic level. The results showed
that subjects produce more accurate results using camel-case identifiers but at a
cost: the time and visual effort to read camel-case identifiers is greater than those
with underscores. The eye tracking data shows that an increase in visual effort for
reading camel-case identifiers. These results concur with research done in cognitive
psychology, particularly, the results of New et al. (2006), which found that words
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with greater than six to nine characters require multiple fixations since camel-case
identifiers lead to long “words” given the lack of spaces. From these experiments,
it can be concluded that identifier Style does have an impact on the readability of
identifiers (i.e., Research Question 1)

These two experiments were followed by four more studies attempting to un-
derstand if Style impacts comprehension with the assumption that Style impacts
readability. That is, Style appears to impact readability in simple tasks not in the
context of reading programs. The next three studies examined a variety of more
sophisticated comprehension tasks. In the first of these studies (Where’s Waldo),
there is additional evidence that subjects were faster and more accurate in the camel
case Style, again supporting a positive answer for Research Question 1. It also gives
some indication that Style may have an impact on more complex comprehension
tasks. Additionally, training seems to improve accuracy but does little for speed,
which is not surprising because training gives subjects more experience with tasks
such as reading and scanning code.

The SAT study represents a more complex comprehension task. The results
concur with the Where’s Waldo experiment that identifier Style does impact com-
prehension with respect to time but not accuracy. However, the previous result
does provide support in answering positively Research Question 2, as a significant
impact on comprehension is occurring. Thus, the impact of Style is more than just
mechanical or syntactical.

Interestingly, the result is the opposite of the first two studies where camel casing
was favored in accuracy. The results for the SAT study are much more in line with the
expectation from similar studies in cognitive psychology (New et al. 2006; Epelboim
et al. 1997) on natural language comprehension. Thus, while in a natural-language
context underscores provide better readability, in a software context, camel casing
seems to provide better readability. The difference between the two tasks is the
type of comprehension required (reading source code versus prose). In particular,
subjects can take advantage of distinct visual features for doing a recognition task
that doesn’t help a subject who is actually trying to comprehend the text. In Where’s
Waldo other skills, such as programming background, can enhance effectiveness. In
the SAT study, the subject must comprehend the passage to be successful at the task.
Another difference between the two contexts is the repetition of multi-part words.
In the SAT study, subjects saw such words essentially once, while in the first two
studies (Cloud and Where’s Waldo), identifiers are repeated frequently. In short, the
SAT study is in agreement with results for natural language reading but those studies
with source code reading contradict natural language reading.

The next two studies consider problems that require a more complex compre-
hension task (as in the SAT study) but in a software context (as in Where’s Waldo
and Cloud) and attempt to resolve some of the conflicting results. In the Tracker-
code experiment, it was found that while there is little difference between the styles
for expert programmers, there is a significant improvement in recall correctness for
beginner programmers when using camel case. In particular, the visual effort for
short identifier names (e.g., rowSum) appears to be greater when using underscores.
One possible explanation is that programmers chunk such short phrases into one
concept because they are common concepts in the problem or solution domain (e.g.,
rowSum, xAxis). Thus, the use of underscore gets in the way of understanding these
identifiers; an issue that deserves further investigation. Combined, these two results
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seem to favor camel-cased identifiers. This study also provides further evidence that
reading source code is fundamentally different than reading natural language.

The studies also find some indication that subjects may not retain the Style in
which they saw/read the identifiers. This lack of retention could partially explain
the difference between reading source code and reading natural language where
the complexity of source code overshadows the comprehension impact of Style.
Programmers construct a mental model (Brooks 1983; Soloway and Ehrlich 1984)
of the code and the details of the syntactic features are less important. That is, the
result of comprehension is a program plan with the specifics of the syntactic features
filtered out rather than a rote memorization of the exact program text. The first
four studies also appear to show that expert programmers exhibit little difference
in accuracy between the two styles and that, through training, any difference could
most likely be mitigated. This result further supports the impression that the mental
model constructed by developers washes out the details of the program text to some
degree.

The last study, (Read-aloud) was unable to show support for the Performance
and Efficiency hypotheses. Given that the experiment is unable to show any effect
of Style in the comprehension of source code, it is interesting to consider likely
reasons. Four possible explanations are considered. First, there actually is no effect
of Style. It could be that at the comprehension-level compounding factors swamp
the effects of Style that were observed when subjects performed simpler tasks. The
second explanation is that the two methods chosen were not suitable to reveal the
difference even though a difference exists. When compared to the SAT experiment
where the requirements for a suitable paragraph have been refined over several
decades, no analogous requirements are known for choosing methods that will
reveal differences in comprehension. The third explanation is that the method
of ascertaining comprehension was not discerning enough. As in the selection of
paragraphs, the particular types of questions asked to measure comprehension in
the SAT experiment have been refined over several decades. The final explanation is
that there were too few subjects. It could be that the differences would be significant
if more subjects were evaluated. The study of these possibilities is left to future
work. One thing is clear: the software engineering community must be cautious about
making assumptions based on natural language comprehension studies.

12 Conclusions and Future Work

This paper presents a family of studies investigating the impact of identifier Style
on source code comprehension. A variety of data collection methods such as on-
line questionnaires, verbal, and eye-tracking methods are used. Besides the prior
work (Binkley et al. 2009a; Sharif and Maletic 2010a), no other studies of the impact
of Style on code readability and higher comprehension tasks exist in the literature.

The experimental results are by no means in total agreement. But a number of
the studies seem to be pointing towards some general conclusions. Understanding
how humans comprehend something as abstract as source code is not a simple
problem. The results provide a better understanding of the fundamentals of reading
and comprehending source code and thus provide foundation for future research.

Clearly, reading natural language and source code appear to be quite different.
Further experiments are necessary to determine the exact differences; however, it
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is postulated that the more formal structure and syntax of source code allows pro-
grammers to assimilate and comprehend parts of the code quite rapidly independent
of Style. In particular, as seen in previous work (Wiedenbeck 1991), beacons and
program plans play a large role in comprehension. This type of mental model is less
prevalent in understanding natural language prose.

The issues of training and expertise also play a role in Style’s impact on reading
and comprehension. Expert programmers appear to not be impacted greatly by Style.
This would imply that refactoring legacy code to reflect newer identifier styles is most
likely unwarranted in the context of readability.

For future work, experiments need to be conducted on a larger more diverse
population sample and focus on specific, more realistic, software tasks such as
debugging within an IDE setting. These experiments will help determine if Style
impacts higher-level comprehension within a realistic setting familiar to developers.

In the end, this work does beg the question: To camelCase or under_score? The
accumulated evidence, leads to the conclusion that camel case is the better choice,
especially for beginning programmers.
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