
 ! " # $ % & ' ( % ) % *

 !"#$%#$&#'(#)*+,#&(#-.*+/#&(#0+(1+*23

 !"#$%&'()!*

Most of the topics in this book—the best ways to develop software, the costs of developing

software, what communications facilitate programming—revolve in some way around

programmers. But it’s hard even to become a programmer in the first place. Few people try to

enter the field, and even fewer succeed. In this chapter, we ask why it’s so hard to learn to

program.

Whether we need to develop more programmers at this moment is a point of dispute. The

United States Bureau of Labor Statistics recently predicted an enormous demand for computing

professionals. According to the November 2008 report [Association 2008], the demand for “IT

Professionals” from 2006–2016 will be twice the growth rate of the rest of the workforce. The

updated estimate of November 2009 said: “‘Computer and mathematical’ occupations are the

fastest growing occupational cluster within the fastest growing major occupational group”

[Consortium 2010]. But what does “IT Professional” mean? A “computer and mathematical”

occupation? The experience of many newly unemployed IT workers, especially during the

current downturn, suggests that maybe there are too many programmers in the United States

today [Rampell 2010].

Although it may not be clear whether we need more programmers, it is clear that many start

down the path of programming and fail early. Rumors of high failure rates in introductory

computing courses (typically referred to as “CS1” in reference to an early curriculum standards

report) are common in the literature and in hallway discussions at conferences such as the

ACM Special Interest Group in Computer Science Education (SIGCSE) Symposium. Jens

Bennedsen and Michael Caspersen made the first reasonable attempt to find out what failure

   



rates really look like [Bennedsen and Caspersen 2007]. They asked for data from faculty around

the world via several computer science (CS) educator mailing lists. Sixty-three institutions

provided their failure rates in introductory courses, which means that these data are self-

selected and self-reported (e.g., schools with really embarrassing results may have chosen not

to participate, or to lie, and the results can be skewed because the sampling was not random).

Overall, 30% of students fail or withdraw from the first course, with higher rates in colleges

than universities (40% versus 30%). Thus, we have indications that roughly one out of every

three students who start a CS1 course, around the world in all kinds of institutions, fails or

gives up. Why is that?

The Bennedsen and Caspersen results report success or failure in taking a class. A CS1 teacher’s

criteria aren’t the only possible definition of success, however. There are many programmers

who never took a course at all, yet are successful. So we first need to establish that students

really do have a hard time learning programming, apart from the evidence of grades. If we can

establish that, the next question is, “Why?” Is programming an unnatural activity? Could

programming be made easier in a different form? Could programming be taught in a different

way that makes learning easier? Or maybe we just have no idea how to actually measure what

students know about programming.
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At Yale University in the 1980s, Elliot Soloway gave the same assignment regularly in his Pascal

programming class [Soloway et al. 1983]:

Write a program that repeatedly reads in positive integers, until it reads the integer 99999. After

seeing 99999, it should print out the average.

Called “The Rainfall Problem,” it became one of the most studied problems in the early years

of computing education research. In the 1983 paper from which this formulation of the

problem is taken (other formulations were explored in other papers), the Yale team was

exploring whether having a leave statement (a break in C or Python) improved student

performance on the problem. They gave the problem to three groups of students:

• First-semester CS1 students after learning and using WHILE, REPEAT, and FOR, 3/4 of

the way through the term

• CS2 (second semester of computing coursework, typically a data structures course)

students 3/4 of the way through the term

• Juniors and seniors in a systems programming course

In each class of students, half the students used traditional Pascal and the other half had the

opportunity to use Pascal with an added leave statement. The results, summarized in

Table 7-1, may shock those who have successfully entered a programming career. Only 14%

of the introductory students could solve this problem in raw Pascal? And 30% of the most

advanced students couldn’t solve it either? This study was repeated in the literature several
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times (e.g., dissertations by both Jim Spohrer [Spohrer 1992] and Lewis Johnson [Johnson

and Soloway 1987] studied students working on the Rainfall Problem), and has been repeated

informally many times since—with surprisingly similar results every time.
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The problem requires a relatively complex conditional controlling the loop. If the input is

negative, ignore it but continue to accept input. If the input is positive and not 99999, add it to the total

and increment the count. If the input is 99999, ignore the input and leave the loop. It’s easy to get an

error where negative input or 99999 gets added into the sum.

These results were at Yale University. Could it be that Yale was just really bad at teaching

programming? Few students in those years might have learned programming before entering

college, so whatever instruction they received came from the CS1 course. Researchers for many

years wondered how to conduct a study of programming that would avoid the complicating

factor of possibly bad instruction at a particular school.
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In 2001, Mike McCracken [McCracken et al. 2001] organized a group of researchers to meet

at the Innovation and Technology in Computer Science Education (ITICSE) conference held

at the University of Canterbury at Kent. ITICSE is a European conference, and it draws

participants from all over the world. Teachers in McCracken’s group were to conduct the same

study in each of their CS1 or CS2 classes: assign the same problem, and give students 90

minutes to complete the assignment on paper. All the student data were submitted and

analyzed by the participants at the conference. Four institutions from three countries

participated in this first multi-institutional, multi-national (MIMN) study of student performance

in computing. By comparing students across institutional and country borders, the researchers

hoped to get a clear picture of just what students really can do in their first courses.

The problem was to evaluate arithmetic expressions (prefix, infix, or postfix) with only

numbers, binary operators (+, ‒, /, *), or unary negation (~ in order to avoid the complication

of overloading the minus character). Overall, 216 students submitted answers. The average

score on a language-independent grading rubric of 110 points was 22.89 (21%). Students did

horribly on this problem. One teacher even “cheated” by explicitly lecturing on expression

evaluation before the problem was assigned. That class performed no better.
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The McCracken Working Group did several evaluations of their data. They found that

performance varied dramatically between classes. They also saw evidence of the “two hump

effect” that many computing teachers have noted and several papers have tried to explain.

Some students just “get it” and perform very well. The larger hump of students performs much

worse. Why is it that some students just “get” programming and others don’t? Variables ranging

from past computing experience to mathematical background have been explored [Bennedsen

and Caspersen 2005], and there is still no convincing explanation for this effect.

?>(#3.*%(4#C"4B.)5#D4"&;

Some students may not respond to a particular teacher or teaching style, but why did so many

students at different institutions do so badly? Are we teaching badly everywhere? Are we

overestimating what the students should be able to do? Or are we not measuring the right

things? Raymond Lister organized a second ITICSE Working Group in 2004 to explore some

of these questions [Lister et al. 2004].

The Lister group’s idea was that the McCracken group asked too much of students. Giving them

a problem required a very high level of thinking to design and implement a solution. The Lister

group decided to focus instead on the lower-level abilities to read and trace code. They created

a multiple-choice questionnaire (MCQ) that asked students to perform tasks such as reading

code and identifying outcomes, or identifying the correct code for the empty gaps in a program

fragment. The questions focused on array manipulation. They asked their participants from

around the world to try the same MCQ with their students, and to bring their results to ITICSE.

The Lister group results were better, but still disappointing. The 556 students had an average

score of 60%. Although those results did suggest that the McCracken group overestimated

what students could do, Lister and his group expected much better performance on their

questions.

The McCracken and Lister efforts taught researchers that it is hard to underestimate how much

students understand about programming in their first course. They are clearly learning far less

than we realize. Now, some students are learning. But the majority are not. What’s so hard

about programming that most students can’t easily pick it up?
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Linguists generally agree that humans are “wired” for language. Our brains have evolved to

pick up language quickly and efficiently. We are wired specifically for natural language.

Programming is the manipulation of an artificial language invented for a particular, relatively

unnatural purpose—telling a nonhuman agent (a computer) exactly what to do. Maybe

programming is not a natural activity for us, and only a few humans are able to do the complex

mental gymnastics to succeed at this unnatural act.
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How might we answer this question? We can try an approach similar to Lister’s modification

to McCracken’s approach: choose a smaller part of the task and focus just on that. To program

requires telling a machine what to do in an unnatural language. What if we asked study

participants to tell another human being to accomplish some task, in natural language? How

would participants define their “programs”? If we remove the artificial language, is

programming now “natural” or “commonsense”?

L.A. Miller asked participants in his studies to create directions for someone else to perform

[Miller 1981]. The participants were given descriptions of various files (such as employees,

jobs, and salary information) and tasks like:

Make one list of employees who meet either of the following criteria:

(1) They have a job title of technician and they make 6 dollars/hr. or more.

(2) They are unmarried and make less than 6 dollars/hr.

List should be organized by employee name.

Miller learned a lot about what was hard and what was easy for his participants. First, his

subjects completed their tasks. He doesn’t say that 1/3 of all the subjects gave up or failed, as

happens all the time in programming classes. The basic challenge of specifying a process for

someone else doesn’t seem to be the problem.

A key difference between the natural language solutions to Miller’s problems and the

programming problems studied by earlier researchers is the structure of the solution. Miller’s

subjects didn’t define iterations, but set operations. For instance, they didn’t say, “Take each

folder and look at the last name. If it starts with ‘G’....” Instead, they talked about doing things

“for all the last names starting with ‘G’....” Miller was surprised at this: no one ever specified

the ending conditions for their loops. Some people talked about testable IF-like conditions, but

none ever used an ELSE. These results alone point to the possibility of defining a programming

language that is naturally easier for novices.

Miller ran a separate experiment where he gave other participants the instructions from the

first experiment with the vague loops. Nobody had any problem with the instructions. It was

obvious that you stopped when you were done with data. Subjects processed the set; they

didn’t increment an index.

John Pane took up this exploration again in the late 1990s and early 2000s [Pane et al.

2001]. Pane was explicitly interested in creating a programming language that would be closer

to how people “naturally” described processes to one another. He replicated Miller’s

experiments, but with a different task and different input. He was worried that by providing

“files” and asking for “lists,” Miller may have been leading the witness, so to speak. Instead,

Pane showed the subjects images and movies of videogames, then asked them how they would

want to tell the computer to make that happen, e.g., “Write a statement that summarizes how

I (as the computer) should move Pac-Man in relation to the presence or absence of other

things.”
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Pane, like Miller, found that people weren’t explicit about their looping. He went further to

characterize the kinds of instructions they wrote in terms of programming paradigms. He found

lots of use of constraints (“This one is always doing that”), event-driven programming (“When

Pac-Man gets all the dots, he goes to the next level”), and imperative programming. Nobody

ever talked about objects even once. They talked about characteristics and behaviors of entities

in the video game, but no groupings of those entities (e.g., into classes). They never talked

about the behaviors from the perspective of the entities themselves; everything was from the

perspective of the player or the programmer.

Based on Miller and Pane’s experiments, we might claim that people may be able to specify

tasks to another agent, but that our current programming languages do not allow people to

program the way that they think about the tasks. If the programming languages were made

more natural, would the majority of student then be able to program? Could people solve

complex problems involving significant algorithms in the more natural language? Would a

more natural language be good for both novices’ tasks and professionals’ tasks? And if not,

might students of CS still have to deal with learning the professionals’ language at some point?

A group of researchers who call themselves the Commonsense Computing Group have been

asking some of these questions. They ask pre-CS1 students to solve significant algorithmic

tasks, such as sorting or parallelizing a process, in natural language and before they have

learned any programming languages. They find their subjects to be surprisingly successful at

these tasks.

In one study [Lewandowski et al. 2007], they asked students to create a process for a theater

that decides to have two ticket sellers.

Suppose we sell concert tickets over the telephone in the following way—when a customer calls

in and asks for a number (n) of seats, the seller (1) finds the n best seats that are available, (2)

marks those n seats as unavailable, and (3) deals with payment options for the customer (e.g.,

getting a credit or debit card number, or sending the tickets to the Will Call window for pickup).

Suppose we have more than one seller working at the same time. What problems might we see,

and how might we avoid those problems?

Some 66 participants across five institutions attempted to solve this problem—with surprising

success! As seen in Table 7-2, almost all the students recognized what the real challenge of the

problem was, and 71% came up with a solution that would work. Most of these solutions were

inefficient—because they involved a centralized arbiter—so there is still much for these

students to learn. However, the point that they could solve a parallel processing problem

suggests that the problem of getting students to program may be in the tools. Students may be

more capable of computational thinking than we give them credit for.
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How do we make the tools better? One obvious possible answer is by moving to a more visual

notation. Since David Smith’s icon-based programming language Pygmalion emerged [Smith

1975], the theory has been that maybe visual reasoning is easier for students. There certainly

have been a lot of studies showing that visualizations in general helped students in computing

[Naps et al. 2003], but relatively few careful studies.

Then, Thomas Green and Marian Petre did a head-to-head comparison between a dataflow-

like programming language and a textual programming language [Green and Petre 1992]. They

created programs in two visual languages that had been shown to work well in previous studies

and in a textual language that had also tested well. Subjects were shown a visual program or

a textual program for a short time, and then asked a question about it (e.g., shown input data

or output results). Understanding the graphical language always took more time. It didn’t matter

how much experience the subject had with visual or textual languages, or what kind of visual

language. Subjects comprehended visual languages more slowly than textual languages.

Green and Petre published several papers on variations of this study [Green et al. 1991]; [Green

and Petre 1996], but the real test came when Tom Moher and his colleagues [Moher et al.

1993] stacked the deck in favor of visual languages. Tom and his graduate students were using

a visual notation, Petri Nets, to teach programming to high school students. He got a copy of

Green and Petre’s materials and created a version where the only visual language used was

Petri Nets. Then, Tom reran the study with himself and his students as subjects. The surprising

result was that textual languages were more easily comprehended again, under every

condition.

Are we wrong about our intuition about visual languages? Does visualization actually reduce

one’s understanding of software? What about those studies that Naps et al. were talking about

[Naps et al. 2003]? Were they wrong?

There is a standard method for comparing multiple studies, called a meta-study. Barbara

Kitchenham describes this procedure in Chapter 3 of this book. Chris Hundhausen, Sarah

Douglas, and John Stasko did this type of analysis on studies of algorithm visualizations

[Hundhausen et al. 2002]. They found that yes, there are a lot of studies showing significant

benefits for algorithm visualizations for students. There are a lot of studies with nonsignificant
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results. Some studies had significant results but didn’t make it obvious how algorithmic

visualizations might be helping (Figure 7-1). Hundhausen and colleagues found that how the

visualizations were used matters a lot. For example, using visualizations in lecture

demonstration had little impact on student learning. But having students build their own

visualizations had significant impact on those students’ learning.

Non-significant result

1 (4%)

2 (8%)

11 (46%)

Significant result

Significant result in

which contribution of 

AV uncertain

Significant result in 

wrong direction

10 (42%)
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A few studies varied the use of visualization while holding all other variables constant (e.g.,

type of class, type of student, teacher, subject). Although Hundhausen and colleagues suspect

the way visualization is used is important after their analysis of 24 studies, that result is not

the same as testing the suspicion. One thing we have learned from studies in education is that

it is actually quite difficult to predict the outcomes. Humans are not as predictable as a falling

projectile or chemical cocktails. We actually have to test our suspicions and hypotheses, and

sometimes test them repeatedly under different conditions, until we are convinced about some

finding.
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What we know thus far is that beginning computing students learn far less about design and

programming than we might predict, and they fail their first course at a pretty high rate. We

find that changing from textual to visual modalities does not consistently result in better results,

which suggests that another variable may be at play. The previous section explored the

possibility that differences in how visualizations are used may be one such variable. What other

variables might we manipulate in order to improve student success and learning?
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In 1999, Georgia Tech decided to require introductory computing of all undergraduate

students. For the first few years of this requirement, only one course satisfied this requirement.

Overall, the pass rate in this course was 78%, which is quite good by Bennedsen and 

Caspersen’s analysis [Bennedsen and Caspersen 2007]. However, that number wasn’t so good

when we start disaggregating it. The pass rate for students from the Liberal Arts, Architecture,

and Management colleges was less than 50% [Tew et al. 2005a]. Women failed at nearly

twice the rate of men. A course aimed at all students, but at which mostly males in technical

majors pass, highlights general problems in teaching computing.

In 2003, we started an experiment to teach students in those classes a different kind of

introductory course, one contextualized around manipulating media [Forte and Guzdial 2004].

Students worked on essentially the same kinds of programming as in any other introductory

computer science course. In fact, we worked hard to cover all the topics [Guzdial 2003] that

were recommended by the then-current ACM and IEEE Computing Standards [IEEE-CS/ACM

2001]. However, all the textbook examples, sample code in lectures, and homework

assignments had students manipulating digital media as the data in these programs. Students

learned how to iterate through the elements of an array, for instance, by converting all the

pixels in a picture to grayscale. Instead of concatenating strings, they concatenated sound

buffers to do digital splicing. Iteration through a subrange of an array is introduced by removing

red-eye from a picture without messing up any other red in the picture.

The response was positive and dramatic. Students found the new course more relevant and

compelling, particularly women, whose pass rate rose above men’s (but not with any statistical

significance) [Rich et al. 2004]. The average pass rate over the next three years rose to 85%,

and that applies even to those majors who were passing at less than 50% per semester before

[Tew et al. 2005a].

Sounds like a big success, but what do these papers really say? Do we know that the new

approach is the only thing that changed? Maybe those colleges suddenly started accepting much

smarter students. Maybe Georgia Tech hired a new, charismatic instructor who charmed the

students into caring about the content. Social science researchers refer to these factors that

keep us from claiming what we might want to claim from a study threats to validity.* We can

state, in defense of the value of our change, that the [Tew et al. 2005a] paper included semesters

with different instructors, and the results covered three years’ worth of results, so it’s unlikely

that the students were suddenly much different.

Even if we felt confident concluding that Georgia Tech’s success was the result of introducing

Media Computation, and that all other factors with respect to students and teaching remained

the same, we should wonder what we can claim. Georgia Tech is a pretty good school. Smart

students go there. They hire and retain good teachers. Could your school get better success in

introductory computing by introducing Media Computation?

* http://www.creative-wisdom.com/teaching/WBI/threat.shtml

;!< ' = ( ' = $ ' (> ' !"&? ' $> ' @ %"&* ' $> ' # &>A&"BC '   S



The first trial of Media Computation at a different kind of school was by Charles Fowler at

Gainesville State College in Georgia. Gainesville State College is a two-year (not undergraduate

and post-graduate) public college. The results were reported in the same [Tew et al. 2005a]

paper. Fowler also found dramatically improved success rates among his students. Fowler’s

students ranged from computer science to nursing students. However, both the Georgia Tech

and Gainesville students were predominantly white. Would this approach work with minority

students?

At the University of Illinois-Chicago (UIC), Pat Troy and Bob Sloan introduced Media

Computation into their “CS 0.5” class [Sloan and Troy 2008]. Their class was for students who

wanted to major in computer science but had no background in programming. A CS 0.5 class

is meant to get them ready for the first (“CS1”) course. Over multiple semesters, these students’

pass rate also rose. UIC has a much more ethnically diverse student population, where a

majority of their students belong to minority ethnic groups.

Are you now convinced that you should use Media Computation with your students? You

might argue that these are still unusual cases. The studies at Georgia Tech and Gainesville were

with nonmajors (as well as majors at Gainesville). Although Troy and Sloan are dealing with

students who want to major in computer science, their class is not the normal introductory

computer science course for undergraduate majors.

Beth Simon and her colleagues at the University of California at San Diego (UCSD) started

using Media Computation two years ago as the main introductory course (“CS1”) for CS majors

[Simon et al. 2010]. More students pass with the new course. What’s more, the Media

Computation students are doing better in the second course, the one after Media Computation,

than the students who had the traditional CS1.

Is that it? Is Media Computation a slam dunk? Should everyone use Media Computation?

Although my publisher would like you to believe that [Guzdial and Ericson 2009a]; [Guzdial

and Ericson 2009b], the research does not unambiguously bear it out.

First, I haven’t claimed that students learn the same amount with Media Computation. If

anyone tells you that students learn the same amount with their approach compared to

another, be very skeptical, because we currently do not have reliable and valid measures of

introductory computing learning to make that claim. Allison Tew (also in [Tew et al. 2005a])

first tried to answer the question of whether students learn the same in different CS1s in 2005

[Tew et al. 2005b]. She developed two multiple-choice question tests in each of the CS1

languages she wanted to compare. She meant them to be isomorphic: a problem meant to

evaluate a particular concept (say, iteration over an array) would be essentially the same across

both tests and all languages. She used these tests before and after a second CS course (CS2) in

order to measure how much difference there was in student learning between the different

CS1s. Tew found that students did learn different things in their CS1 class (as measured by the

start-of-CS2 test), but that those differences disappeared by the end of CS2. That’s a great
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finding, suggesting that the differences in CS1 weren’t all that critical to future success. But in

future trials, she never found the same result.

How could that be? One real possibility is that her tests weren’t exactly the same. Students

might interpret them differently. They might not measure exactly the kind of learning that she

aimed to test. For instance, maybe the answer to some of the multiple-choice questions could

be guessed because the distractors (wrong answers) were so far from being feasible that

students could dismiss them without really knowing the right answer. A good test for

measuring learning should be reliable and valid—in other words, it measures the right thing,

and it’s interpreted the same way by all students all the time.

As of this writing we have no measure of CS1 learning that is language-independent, reliable,

and valid. Tew is testing one now. But until one exists, it is not possible to determine for sure

that students are learning the same things in different approaches. It’s great that students

succeed more in Media Computation, and it’s great that UCSD students do better even in the

second course, but we really can’t say for sure that students learn the same things.

Second, even if Georgia Tech, Gainesville, UIC, and UCSD were all able to show that students

learned the same amount in the introductory course, what would all that prove? That the

course will work for everyone? That it will be better than the “traditional” course, no matter

how marvelous or successful the “traditional” course is? For every kind of student, no matter

how ill-prepared or uninterested? No matter how bad the teacher is? That’s ridiculous, of

course. We can always imagine something that could go wrong.

In general, curricular approaches offer us prescriptive models, but not predictive theories. Media

Computation studies show us evidence that, for a variety of students and teachers, the success

rate for the introductory course can be improved, but not that it inevitably will improve. Being

able to promise improvement would be a prescription. It is not a predictive theory in the sense

that it can predict improvement, not without knowing many more variables that have not yet

been tested with studies. It also can’t be predictive because we can’t say that not using Media 

Computation guarantees failure.
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Computing Education Research, as a field of study, is still a fledgling discipline [Fincher and

Petre 2004]. We are just recently realizing the importance of computing education and the

need to support the teaching of computing. The ACM organization that supports computing

teachers, Computer Science Teachers Association (CSTA), was formed only in 2005. In

contrast, the National Council of Teachers of Mathematics was formed in 1920.

Most of our studies point more toward how complex it is for humans to learn how to program

a computer. We continue to marvel at the intelligence and creativity of humans, and that even

students without training in computing can already think in algorithmic terms. However,

developing that skill to the point that it can be used to give directions to a machine in the
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machine’s language occurs more slowly than we might expect. We can get students through

the process, but we still don’t have effective measures of how much they’re learning.

What we really need as a field are predictive theories, based on models of how people really

come to develop their understanding of computing. On those theories, we can build curricula

in which we can have confidence. ACM’s International Computing Education Research

workshop is only five years old this year, and the number of attendees has never topped 100.

We have few workers, and they have only just started at a difficult task. We have taken only

the first steps toward understanding why it is that students find it so hard to learn to program.
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