
Experience Report: CS1 in MATLAB for Non-Majors, with
Media Computation and Peer Instruction

Cynthia Bailey Lee
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA, USA

clbailey@ucsd.edu

ABSTRACT

As computer programming is increasingly considered an essential

literacy skill for all students, MATLAB courses in particular can

play a role in introducing non-major students to a tool commonly
used in many of their fields. This paper reports on our

department’s experience introducing a CS1 in MATLAB for non-

majors course. The course assumed no prior programming

experience and no training in linear algebra. Without linear
algebra and without the ability to do domain-specific tailoring, we

turned to Media Computation to contextualize the skills and

motivate students. Media Computation is an approach to

programming instruction that focuses on manipulation of visual,
audio, and video media. The course design also featured the Peer

Instruction lecture format, in which lectures are punctuated by

frequent questions that students answer individually and in small

groups. To our knowledge, this represents the first time that

Media Computation and Peer Instruction pedagogies have been

comprehensively adapted to a MATLAB course. This work shares

selected materials designed for this course, and reports outcomes

of the two terms the course has been offered.

Categories and Subject Descriptors

K.3.2 [Computer Science Education].

General Terms

Design, Human Factors

Keywords

Media Computation, Peer Instruction, Clickers, Classroom

response, Active learning, MATLAB, CS1.

1. INTRODUCTION
Our work on an introductory MATLAB course began in close

collaboration with the Cognitive Science department, who wanted

a required lower-division preparation for their upper-division

coursework that uses MATLAB to perform domain-specific tasks,
such as statistical analysis of experimental data and simulations of

cognitive processes (e.g. neural nets). This course was to redress

concerns about poor student preparation in their upper-division

courses, and low student satisfaction with existing options for

attaining introductory programming skills. The course is also part

of our department’s movement towards centralizing introductory
programming instruction within the department—rather than

having such courses scattered across departments—and assuming

a larger service role on campus. This shift sets the stage for

computer programming to be considered a fundamental literacy
skill for all majors and a component of any liberal education, a

vision articulated as early as 1961 by Alan Perlis. [9,10]

The design constraints and goals for the course were as follows:

 Assume no prior programming experience.

 Assume no training in linear algebra.

 Proactively address differences demographics, self-

efficacy, and long-term goals that distinguish a non-
majors audience from a majors audience.

 Build a solid foundation of basic programming skills

(variables, conditionals, loops, functions, etc.), with

special emphasis on unique MATLAB features for

matrix handling.

 Do not include topics specific to cognitive science.

Without the ability to assume students have a foundation in linear

algebra, an interesting question for a MATLAB course, what

should they do with MATLAB, then? And with the request that
the focus be on foundational programming constructs, and not

cognitive science-specific content, another interesting question

was, how can we contextualize and motivate the material being

presented in this course? Media Computation (MediaComp)
provided an attractive answer to both these questions. However,

no textbook or other materials introducing MATLAB from a

MediaComp perspective were available. This paper presents our

efforts in creating our own.

To help foster an atmosphere of community learning and

supportive collaboration, keep non-major students focused and

engaged with the course material, and emphasize “big picture”

conceptual understanding that can form a foundation for lifelong
computer literacy, we adopted the Peer Instruction (PI) lecture

format.

In this paper, we first define MediaComp and PI and review the

existing literature on their benefits—benefits we hoped to obtain
for our students. Then selected course materials are introduced,

demonstrating how even very early beginning MATLAB concepts

can be accessibly introduced using MediaComp and PI. Next

follows a summary of evidence of the success of the course

design, including student survey results. Finally, we discuss

lessons learned and concluding advice for instructors interested in

MATALB courses targeted to non-majors that are effective and

well received by students.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGCSE’13, March 6-9, 2013, Denver, Colorado, USA.

Copyright 2013

2. RELATED WORK
Programming courses for non-majors present a particularly

fraught pedagogical design challenge. Previous work notes issues
with self-efficacy in introductory programming courses for non-

majors. [19] Self-efficacy is the belief in one’s own competence

and ability to attain a goal. Many students entering this course

have expressed low self-efficacy in relation to anything having to
do with computers.

MediaComp is an approach to introductory programming

designed with outreach and appeal to non-major students in mind.

[9,10] Developed by Georgia Tech faculty Mark Guzdial and
Barbara Ericson, MediaComp frames computer programming as a

skill that enables students’ expressive manipulation of digital

media. This coupling of creativity and computing provides

students with the context to see the utility of course topics.
MediaComp textbooks and other materials are available for Java

[7], Python [8], and Alice (Java) [4] programming languages.

Comprehensive MediaComp materials were not yet available for

MATLAB. We did take inspiration from Introduction to Scientific
Computation and Programming [12], which also served as the

students’ textbook for the course. The text introduces MATLAB

in a conventional (non-MediaComp) format, but includes

extensive image, sound, and other media manipulation content in
later chapters.

The MATLAB MediaComp materials described in this paper

consist of both programming exercises (labs and homework) and

lecture materials. All lectures in this course were conducted using

the Peer Instruction (PI) pedagogy [13]. The PI methodology is as

follows: (1) Before class, students prepare by reading the

textbook. (2) In class, the instructor presents students with several

multiple-choice problems. There may or may not be periods of
traditional lecture between the questions. (3) For each question,

students begin by individually answering and “voting” their

response. (4) Then students discuss the question in small groups,

ideally coming to a consensus, and vote again. (5) The instructor
leads a discussion with the whole class.

PI was created by physics professor Eric Mazur to address

concerns he had about the failure of introductory physics courses

to change the way students thought about the physical world in
their daily lives. Non-majors students in particular could pass their

exams by rote regurgitation of formulas, but failed to correctly

reason about high-level conceptual questions.[2, 13] Effecting a

lifelong change in the way students think about computing, the
Mazur wanted to effect a lifelong change in his students’

understanding of the physical world, is an important goal of this

non-majors course. The crux of productive PI is well-designed

questions, often called ConcepTests [13]. ConcepTests are unlike
most multiple-choice exam questions in that the purpose is to

teach and spark discussion, and to focus on core concept

understanding rather than performance of formulaic procedures.

After enjoying years of study and success in physics, studies of PI
in computing are now being reported [1,3,14,15,16,17,20]. To our

knowledge, there are no reports of PI use in a MATLAB course.

3. SETTING
This section outlines the conditions of the classes reported on in

this paper.

3.1 Classes and Instructor
The instructor who designed the course has now taught it twice at

a large research intensive public university in the United States.
The winter class had an enrollment of 100, and the spring class

had an enrollment of 131.

An i>Clicker brand clicker device was required. Like a textbook,

students may purchase clickers at the bookstore for $20-40, and a

majority had already obtained one for previous course(s) in other

department(s). Clickers offer the instructor detailed record-

keeping of student votes, and offer students vote anonymity to

their peers; both are advantages over lower-cost alternatives such
as colored index cards.

The class format was three 50-minute lectures and one 2-hour lab

per week. Additional drop-in assistance from department tutors

was available throughout the week in the computer lab.

3.2 Assessments
Summative assessment for the course consisted of three in-class

written exams: two midterms and a final. In a beginning, non-

majors course, adequate formative assessment and feedback is

especially important for supporting student learning and
calibrating student expectations. Four categories of formative

assessment were used in this course: reading quizzes, PI questions

in lecture, lab assignments, and homework assignments.

3.2.1 Reading Quizzes
Advance preparation for lecture is essential for students in PI

classes, because they will be responsible to their groupmates for
productive participation. Reading quizzes were 5% of the course

grade and simply provided some enforcement of advance reading.

3.2.2 PI Questions in Lecture
Clicker participation comprised 5% of the course grade, and

points were awarded for participation, not correctness. PI

questions were the most timely source of formative feedback—
students were able to measure their understanding of concepts just

moments after they were taught. Students could also situate their

performance in the range of scores in the class, because of the

instantly tabulated and displayed graph of all students’ responses.

3.2.3 Lab Assignments
Weekly lab assignments were guided explorations of new topics
necessary for that week’s homework. Pair programming was used

for all lab assignments—sometimes randomly assigned and

sometimes student self-selected.

3.2.4 Homework Assignments
Weekly homework assignments challenged students to complete a

more independent and complex programming task, applying skills
introduced in the lectures and lab. Pair programming was used for

all homework assignments, using the same pairing as that week’s

lab. Homework culminated in a two-week art or animation project

of each pair of students’ own design.

4. COURSE MATERIALS
In this section, we share the syllabus design process, as well as

MediaComp and PI content artifacts created for this course.

Examples were selected to highlight materials about programming

constructs that are characteristic to MATLAB (e.g. matrix
indexing), as opposed to those in common with other languages

already taught using PI and/or MediaComp (e.g. while loops).

Source code solutions are provided for selected programming

Figure 1. PI question on matrix row/column indexing.

assignments to allow the reader to gauge the difficulty for
students.

Additional PI materials for the course are available to instructors

for non-commercial use at http://PeerInstruction4CS.org, under a

Creative Commons license.

4.1 Syllabus Design Process
To apply MediaComp to a new language, MATLAB, the first task

was to find a MATLAB textbook that teaches the content we

wanted to teach, and a MediaComp textbook for a different

language (Java) to provide project ideas, and try to reconcile the
two. Starting with the Kaplan MATLAB text [12], we looked at

the chapter (near to the end) where digital media is introduced.

Taking the most basic exercises found there, we listed every skill

necessary to minimally completing each of the exercises (e.g. call
a function with an argument—the image file name, create a

variable to save the output of a function, etc). Then we mapped

out dependencies between all the skills on those lists and the skills

leading up to those skills, and determined the shortest possible
path to them. In other words, a single-minded emphasis on

reaching key MediaComp-relevant skills as soon as possible

dictated the ordering of topics at the beginning of the course. The

result is to teach as much of the course as possible using
MediaComp.

We determined that simple imperative programming turtle

graphics commands could be introduced in the first lab (midweek

in the first week of class), including allowing students to specify
RGB hues to change the color of the turtle’s line. Full RGB

images (matrices) could be introduced as soon as the first lecture

of the second week. Once RGB images were introduced, nearly all

topics thereafter could be taught using MediaComp methods with
RGB images. Green screen effects were introduced in the fourth

week, and animation with green screen effects in the eighth week.

4.2 MediaComp Matrix Indexing
Although it has grown to encompass many things, MATLAB, as

the name implies, specializes in handling of matrices of numeric
data. Fluency with these features was a key learning goal for the

course, enabling students to rapidly analyze data throughout their

science careers.

Figure 2. PI question on scalar assignment to a matrix region.

(This figure best viewed in color)

4.2.1 PI lectures with MediaComp
MATLAB has a rich syntactic toolkit for matrix indexing by row
and column, but it can take time for beginners to acclimate to

mentally parsing everything that is going on in a line of code that

does multidimensional indexing. Figure 1 shows a lecture slide

that demonstrates how the synergy between PI and MediaComp
creates a simple and effective way for students to work on this

skill.

Throughout the course, we worked with RGB images, which, in

MATLAB, are represented as three-dimensional matrices of type
unsigned 8-bit integer (“uint8”). The first dimension is the rows,

the second is the columns, and the third is the layers (always of

size three—one layer for each of the red, green, and blue values in

the RGB color scheme). MATLAB automatically decompresses
JPEG and other image formats into full matrices of this format

using the imread function, as shown in the code in Figure 1.

Matrix indexing syntax consists of comma-separated row,

column, and layer subscripts. (In MATLAB, these are encased in
parentheses, not square brackets, as array indices are in languages

such as C/C++.) The colon operator is used to specify a range of

values, and the end keyword means the last cell in that dimension.

So the code snippet in Figure 1 selects the top half of the rows, all
the columns, and all three color layers (colon operator by itself is

equivalent to 1:end), giving an answer of (c).

Figure 2 shows a similar question, this time with the matrix

indexing occurring on the left hand side of the assignment
operator. Students needed to puzzle out both which row/column

region of the matrix was being selected, and what should happen

to the color in the image when that region is set to zero. The

selected region is the first (red) layer of the top left quadrant of
the image. The RGB color reference on the slide (a recurring

image) helped students recall that saturated green and blue

together, with no red, gives teal. So the correct answer is (d).

These questions show how MediaComp supports implementation
of the PI ConcepTest philosophy by enabling instructors to write

questions that are stripped of distracting details, and engage

students directly with important “big picture” concepts in the

course. With a firm grasp of the big picture in hand, students can
go forward to master the details—still a critical aspect of

computer programming—in lab and homework settings.

http://peerinstruction4cs.org/

Figure 3. MakeWarhol homework assignment output. (This

figure best viewed in color)

4.2.2 Assignments with MediaComp
The matrix handling theme was carried over from lecture to the

lab and homework assignments, where students wrote their own

code. Figure 3 shows a student’s project from the 3rd week of the
term. (Student work shared with permission.) The image was

created using what we call the MakeWarhol function: it takes as

input an RGB image matrix, extracts the individual RGB layers,

and tiles them (plus the original) onto the four quadrants of a new

RGB image. The result is something loosely inspired by Andy

Warhol’s colorful repeating tiled images. Even more Warholesque

results can be achieved by selecting pairs of layers (e.g. red-green)

and applying a negative effect to some or all of the quadrants,
things some students experimented with.

After writing the required code for assignments like this, students

ran the code on images of their choosing, and posted the results on

the course discussion board. This provided a chance for students
to express their identity to other students, and to build a sense of

accomplishment and community.

The solution code for MakeWarhol is as follows:

function res = MakeWarhol(im)

 red = im(:,:,1);

 green = im(:,:,2);

 blue = im(:,:,3);

 res = zeros(2*size(im,1),2*size(im,2),3);

 res(1:end/2,1:end/2,2) = green;

 res(1:end/2,end/2+1:end,1) = red;

 res(end/2+1:end,1:end/2,3) = blue;

 res(end/2+1:end,end/2+1:end,:) = im;

end

Other matrix-indexing homework and lab exercises included

using the increment specification option for the colon operator to

select every other row (or column), or every third row (or

column), to achieve proportional or out-of-proportion image
resizing effects. This code shows an image that is one third as tall

as the original:

>> im = imread(ˈrainbow.jpgˈ);

>> imshow(im(1:3:end,:,:);

In the 2nd week assignment, students wrote code that performed a

similar static-ratio resizing of an image. In the 3rd week
assignment, students generalized their code by packaging it as a

Figure 4. Selecting image regions by hue using logical matrix

indexing.

function, and parameterizing the horizontal and vertical resize

factors.

4.3 MediaComp Logical Indexing
One of the most powerful features of matrix handling in

MATLAB—and one of the most challenging for students to
understand—is logical indexing. This feature allows users to

index a vector or matrix of data using a matrix of type logical (i.e.

true/false), rather than the row/column ranges shown in the

examples above. A cell of the matrix is selected iff the
corresponding cell in the logical matrix is true/1, and is not

selected if the corresponding cell in the logical matrix is false/0.

This feature allows users to easily create filter views of data—for

example, from a matrix of health data, select the systolic blood
pressure for only those individuals whose age is between 50 and

65.

It also happens that the feature is well suited to doing green

screen special effects. Green screen effects (also called chroma
key effects) are used widely in digital video production, from TV

news to advertising to Hollywood films. A scene is filmed or

photographed with elements (often a background) that is a very

specific hue (often bright green). Later, during digital post-
production work, that region of the scene will be selected by hue

and replaced with some other image.

4.3.1 Creating matrices of type logical in PI
In lecture on the day prior to the lab on green screen effects, the

use of logical operators (and/&, or/|) and relational operators

(<,>,<=,>=,==) on matrices is introduced. MATLAB allows
relational operators to be used between a matrix variable and a

scalar variable. The output is a matrix where each entry is the

result of the pairwise comparison between the scalar and the

corresponding cell in the input matrix. This is illustrated in the PI
question shown in Figure 4. (The answer is (c)—the closer the

three component colors are to 255, the closer to white the color

is.)

The purpose of this question was to introduce the syntax and its
functioning, but also to start a dialog about why a user would

want to do such a thing. The green screen concept was introduced

with examples from popular media. Students were then prepared

to create their own hue-selecting filters in lab.

4.3.2 Logical indexing lab assignment
In lab, students were provided with three images of equal size: a

man with a red and black shirt on a white background, a telescope

photograph of a starry sky, and a multicolor “tie-dye” pattern.
Students were to select the man—but not his white background—

and overwrite it with the space photo, creating a new background.

For this task, they could use the selection code from class (Figure

4), with slight adaptations. The code from class used a very
forgiving definition of “close to white.” Using this included not

only the pure white background, but also other white objects such

as the man’s teeth. Students can adjust the threshold to include a

very small margin, or even only include pure white.

Next, they were to change the man’s red shirt fabric to tie-dye by

selecting the red part of the shirt and overwriting it with pixels

from the tie-dye image. This required more careful hue

thresholding calibration. The shirt has wrinkles and shadows, and
even the best solutions include some false positives and false

negatives in identifying all the red shirt pixels.

That students were largely content spending lengthy amounts of

time writing and re-writing compound logical expressions and
conditional statements illustrates the power of MediaComp as a

motivating context for student exploration of computing. In

course evaluations, many students mentioned the green screen lab

as a compelling one, and in MATLAB the code was
straightforward enough to use as soon as week 4. The solution

code is as follows:

>> person = imread(ˈperson.jpgˈ);

>> sky = imread(ˈsky.jpgˈ);

>> dye = imread(ˈdye.jpgˈ);

>> filter = person(:,:,1) == 255 &

person(:,:,2) == 255 & person(:,:,3) == 255;

>> filter = cat(3,filter,filter,filter);

>> person(filter) = sky(filter);

>> filter = person(:,:,1) > 120 &

person(:,:,2) < 60 & person(:,:,3) < 60;

>> filter = cat(3,filter,filter,filter);

>> person(filter) = dye(filter);

For most assignments, students were encouraged to provide their
own images as input to their code. This allowed students to spend

time with images that are meaningful to them. For this

assignment, we provided the three specific input images because

the code only works for images that have exactly the same
dimensions. Adjusting for different sizes adds several steps,

something students were able to master soon after mastering this

lab assignment. Students made pervasive use of the different-size

image green screen effects on their final projects in the course.

5. RESULTS
University evaluations show the average student approval of the

course that existed before this one was 73% (14 classes offered

since 2007). For the new course, student approval was 81% the

first time it was offered, rising to 88% the second time. There was
a low rates of students dropping the class, relative to the average

for the department, 5% of of the first-day enrollment in Winter

and 8% in Spring. Comments from students on the evaluations

were overwhelmingly positive, many validating achievement of
key design goals for the course (these comments summarized

below). By all anecdotal accounts, both the computer science and

cognitive science departments have been pleased with these

outcomes.

There are three sources of information for evaluating the students’

perspective of whether the course design was successful in the
two times the course has been offered thus far (Winter 2012 and

Spring 2012 terms). First, we have the usual university-conducted

end of term course and professor evaluations quoted above (64%

and 38% response rates, respectively1). Second, we conducted
additional attitudinal surveys of the students directly soliciting

their feedback on use of PI (94% and 83% response rates). Third,

we have an attitudinal survey about lab and homework design

(Winter only, 75% response rate). Student quotes from these three
sources are combined and presented below by topic.

5.1 Lab and Homework Assignments
In the homework survey, students reported an average of 5.6

hours per week of outside study for the course (stdev=2.7,

max=12.5 hours), which is within the department’s guidelines for
appropriate student workload. When asked to name the “most

rewarding” assignment, “whether it was easy or hard,” the most

commonly listed assignments were a tile puzzle game2,

MakeWarhol, and the green screen assignment (collectively
accounting for about 70% of responses).

For the MakeWarhol assignment, even a few students who

mentioned struggling with it said it was still the most rewarding in

the end. One student said, “I use the picture we made with the
MakeWarhol code as a background on my computer.” Another

student said, “MakeWarhol because we did something with an

image that we might actually want to do sometime for a project or

just for fun.”

5.2 MediaComp Pedagogy
Though not everyone agreed (“I think this…course should teach

more about how to apply it to math and data rather than images”),

most students reported extremely positive reactions to the

MediaComp approach used throughout the course. “I have never
taken a [computer science] class before and I was really worried

because I had heard about how difficult [computer science] was

but you have not only made it easy to understand but fun as well.”

Students valued the way the MediaComp approach provided
immediate visual feedback during debugging. One student noted,

“I think the ones that involve images are most rewarding because

the results are very apparent when they are done correctly.”

Another student said, “It was nice to be able to implement code to
[do] something more interesting, [it] helped make it easier to

understand how the code worked.”

Some did see a connection between skills developed using

MediaComp and more traditional applications of those skills. A
student commented, "The course was interesting. Although most

of the programming was done with media the processes that we

learned are very applicable to data analysis.”

Students also enjoyed how working with digital media gave them
a new, insider’s view of computing in their daily lives. One

student said, “Interesting course, I enjoyed that it dealt a lot with

manipulating images with code—showing us the inner workings

of functions we use at the click of a button with programs like

1 The median response rate at the university is 28%.
2 The tile puzzle game took as input any RGB image, divided the

image into a 4x4 grid of tiles, mixed up the order of the tiles

(removing one to create an empty space), and let the user play

an interactive game of “sliding” the tiles back into the correct
order.

photoshop, etc.” Another student declared, “I have new found

respect for computer programers [sic].”

5.3 PI Pedagogy
On the PI survey, 87% and 83% of students (Winter and Spring,

respectively) said they would recommend that other instructors

adopt the PI method. One student expressed his or her perception

of its impact on learning, "Looking back, it felt that I learned the

material automatically by coming to class since it was an

engaging class, instead of having to spend time after class and

before exams reviewing the material as in normal lectures.

Compared to other lectures, I felt like an active participant instead
of a passive listener, and I much preferred this role as a student

instead of the normal role since in the normal role I usually feel

the need to fall asleep."

93% and 91% of students on the same survey agreed with the
statement, “The immediate feedback from clickers helped me

focus on weaknesses in my understanding of the course material.”

6. CONCLUSIONS
We found MediaComp to be an effective pedagogical means to

contextualize computing concepts and motivate non-major
students in a MATLAB CS1 course. In this way, MediaComp has

mitigated the problem created by our course design constraint that

we not include cognitive science domain-specific applications of

MATLAB in this course.

We have further found that using MediaComp contexts for Peer

Instruction (PI) ConcepTest questions often creates a synergy

between the two pedagogies. This is because ideal ConcepTests

confront students with scenarios they can reason about and
discuss at a high level, without unnecessary detail and process

interfering. When the inputs to and outputs from a piece of code

are concrete images, students have a powerful language of

programmatic cause and effect to use in their peer discussions.

The success of these pedagogies in a MATLAB course is

especially significant because of the role the MATLAB language

plays as a commonly used tool for students, professionals, and

academics in disciplines outside of computer science. If computer
programming is to become a critical component of a liberal

education, regardless of major field of study, languages such as

MATLAB may become an important vehicle for that education.

7. REFERENCES
[1] Carter, P. An experiment with online instruction and active

learning in an introductory computing course for engineers:

JiTT meets CS. 14th Western Canadian Conference on

Computing Education, 2009.

[2] Crouch, C. H., and Mazur, E. Peer instruction: Ten years of

experience and results. Am. Journal of Physics 69, 2001.

[3] Cutts, Q., Carbone, A., and van Haaster, K. Using an

Electronic Voting System to Promote Active Reflection on
Coursework Feedback. In Proceedings of International

Conference on Computers in Education, 2004.

[4] Dann, W. P., Cooper, S. P. and Ericson, B. Exploring

Wonderland: Java Programming Using Alice and Media
Computation. Prentice Hall. 2009.

[5] Greenberger, M. Computers and the World of the Future.

Transcribed recordings of lectures held at the Sloan School

of Business Administration, April, 1961. MIT Press,
Cambridge, MA, 1962.

[6] Guzdial, M. A media computation course for non-majors. In

Proceedings of the 8th annual conference on Innovation and

technology in computer science education (ITiCSE '03),
2003.

[7] Guzdial, M. and Ericson, B. Introduction to Computing and

Programming in Java: A Multimedia Approach. Prentice

Hall. 2006.
[8] Guzdial, M. and Ericson, B. Introduction to Computing and

Programming in Python: A Multimedia Approach. Prentice

Hall. 2009.

[9] Guzdial, M. and Forte, A. Design process for a non-majors

computing course. SIGCSE Bull. 37, 1. 2005.

[10] Guzdial, M. and Soloway, E. Computer science is more

important than calculus: the challenge of living up to our

potential. SIGCSE Bull. 35, 2. June 2003.
[11] Hake, R. R. Interactive-engagement vs. traditional methods:

A six-thousand-student survey of mechanics test data for

introductory physics courses. Am. J. of Physics 66, 1998.

[12] Kaplan, D. T. Introduction to Scientific Computation and
Programming. Cengage Learning. 2003.

[13] Mazur, E. Peer Instruction: A User's Manual. Benjamin

Cummings. 1996.

[14] Pargas, R. P., and Shah, D. M. Things are clicking in
computer science courses. In Proceedings of the 37th

SIGCSE, 2006.

[15] Porter, L., Lee, C. B., Simon, B., Cutts, Q., and Zingaro, D.

Experience Report: A Multi-classroom Report on the Value
of Peer Instruction. In proceedings of the 16th ITICSE, 2011.

[16] Porter, L., Lee, C. B., Simon, B., and Zingaro, D. Peer

Instruction: Do Students Really Learn from Peer Discussion

in Computing? In proceedings of 7th International Computing

Education Research Workshop, 2011.

[17] Simon, B., Kohanfars, M., Lee, J, Tamayo, K., and Cutts, Q.

Experience report: Peer instruction in introductory

computing. In Proceedings of the 41st SIGCSE, 2010.
[18] Smith, M., Wood, W., Adams, W., Wieman, C., Knight, J.,

Guild, N., and Su, T. Why Peer Discussion Improves Student

Performance on In-Class Concept Questions. Science, 2009.

[19] Wiedenbeck, S. Factors affecting the success of non-majors
in learning to program. In Proceedings of the International

Workshop on Computing Education Research. 2005.

[20] Zingaro, D. Experience report: Peer instruction in remedial

computer science. In Proceedings of the 22nd World
Conference on Educational Multimedia, Hypermedia &

Telecommunications, 2010.

