
Developing a Validated Assessment of
Fundamental CS1 Concepts

Allison Elliott Tew and Mark Guzdial
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332-0760
{allison, guzdial}@cc.gatech.edu

ABSTRACT
Previous studies of student programming ability have raised
questions about students’ ability to problem solve, read and
analyze code, and understand introductory computing con-
cepts. However, it is unclear whether these results are the
product of failures of student comprehension or our inabil-
ity to accurately measure their performance. We propose
a method for creating a language independent CS1 assess-
ment instrument and present the results of our analysis used
to define the common conceptual content that will serve as
the framework for the exam. We conclude with a discus-
sion of future work and our progress towards developing the
assessment.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education,
curriculum

General Terms
Experimentation, measurement

Keywords
Assessment, CS1, programming, validity

1. INTRODUCTION
Measuring student learning is fundamental to any educa-

tional endeavor. Many STEM disciplines have standard val-
idated assessment tools that allow educators and researchers
to use the instruments to accurately measure student learn-
ing and evaluate curricular innovations (e.g., [10, 4, 14]).
However, computer science does not have a similar set of
validated assessment tools, and practitioners must devise
their own instruments each time they want to investigate
student learning.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

Consider the following recent studies of student program-
ming ability with carefully designed, albeit non-validated,
assessment plans:

A well-cited study by McCracken, et al asked students to
write a program, in a laboratory setting, to build a sim-
ple calculator [19]. Students performed much worse than
expected earning an average of only 20.8% of the possible
points on the assessment. The researchers concluded that
students did not possess the basic programming skills ex-
pected at the end of the introductory sequence. They rea-
soned that the students lacked problem solving ability and
had difficulty abstracting a potential solution from the prob-
lem description.

Lister, et al explored an alternative hypothesis for the stu-
dents’ poor performance in the McCracken study by assess-
ing students’ code comprehension and tracing ability, claim-
ing these were prerequisite skills to problem solving [16].
The assessment consisted of twelve multiple choice questions
(MCQs) focusing on arrays and iteration. Overall, an aver-
age of 60% of the students answered the questions correctly,
and the researchers concluded that students struggled with
the preliminary, basic skills of reading and analyzing code.

Tew, et al investigated the impact of different CS1 courses
on the conceptual knowledge students demonstrate at the
end of the course [24]. Their multiple-choice question assess-
ment found statistically significant differences in knowledge
understanding after CS1 in several fundamental introduc-
tory concepts (e.g., conditional, array, sorting), with only
42.3% of the students answering questions about the intro-
ductory material correctly. They repeated their assessment
at the end of a common second course and found that the
differences in concept understanding were no longer distin-
guishable.

A common theme among these studies is that students
are not performing as well as we would expect and are not
demonstrating mastery of fundamental material, often con-
sidered to be some of the most basic ideas covered in the
introductory curricula. Rather than providing a clear con-
sensus or direction, these studies raise a number of questions.
Do students comprehend the computing concepts we cover in
our introductory courses? Are students able to demonstrate
programming problem solving ability? Is code comprehen-
sion a prerequisite skill for other programming activities?
Perhaps the study results are more indicative of our lack of
precise measures, rather than an accurate measure of stu-
dents’ ability and knowledge.

Valid measures would enable us to know for sure that we
are measuring the results of student learning, would enable

97

direct comparison of pedagogical approaches, and would per-
mit investigation of curricular innovations. Computing edu-
cation and research suffer from the lack of such instruments,
and we seek to develop a validated assessment for CS1 that
would be widely applicable across curricular approaches.

This paper begins with a argument for the importance
of valid assessment instruments in computing and then pro-
poses a method for developing such an instrument in Section
3. Our current progress towards developing the assessment
is presented in the following sections. Section 4 contains the
results of our document analysis used to identify common
introductory concepts, and the test specification and ques-
tion development is outlined in Section 5. We conclude with
a discussion of future work.

2. VALIDITY OF ASSESSMENT
Validity is a measure of “how well the test serves the pur-

pose for which it is used” [15, p. 621]. In other words,
validity is the evidence that assures us that questions about
a particular concept are indeed measuring that concept. For
instance, a question about arrays should require a student to
have knowledge about arrays, but should not require knowl-
edge about another concept, such as recursion. In addition,
it is important that the question cannot be answered cor-
rectly without knowledge of arrays.

In general, there are two classes of evidence used to sup-
port validity claims. Content related evidence ensures that
the assessment’s content appropriately operationalizes the
constructs it is intended to measure. A test designed to as-
sess CS1 knowledge would therefore identify a number of
topics to be measured, and its content validity would be
determined by whether the set of topics is a reasonable op-
erationalization of CS1.

Construct related evidence provides the second set of sup-
port for validity. A construct is “the concept or the charac-
teristic that a test is designed to measure” [2, p. 173]. Em-
pirical analysis of responses to individual questions provides
evidence that the items in the assessment are indeed mea-
suring the desired constructs, rather than something more
or less than intended. Together, content and construct va-
lidity enable a test developer to provide evidence that the
instrument is accurately measuring student knowledge and
skills as intended.

Current assessment practices in computing are limited in
a number of ways. Most of the measures used by researchers
in our field, like the questions used in the McCracken, Lister
and Tew studies mentioned previously, are not validated, so
we cannot be sure that we are measuring the desired out-
comes. On the other hand, the CS Advanced Placement
exam has been validated but is tied to a particular pro-
gramming language and is therefore not widely applicable
across different approaches or courses. Similarly, Decker
[5] developed an assessment for the introductory sequence
of programming courses, also tied specifically to the Java
programming language. The instrument was developed and
tested at a single institution and therefore its validity claims
cannot be generalized beyond that context. Other validated
tests in our field are end of program assessments (e.g., GRE
Subject Test, Major Field Test) and have psychometric or
predictive aims that do not focus on assessing learning.

Building upon the success of concept inventories in physics
and other STEM fields, Zilles, et al have begun development
on a set of inventories for computing [8]. They assembled a

group of experts and are using the Delphi process to iden-
tify sets of difficult and important concepts to develop as-
sessments in three areas: discrete math, logic design, and
programming. However unlike natural sciences, computer
science knowledge has no real world analog, and it remains
an open research question as to whether a set of common
misconceptions, upon which concept inventories are built,
can be identified for computing.

Our work differs from these efforts in that we aim to create
a rigorously validated exam that could be widely adopted
and used in any introductory CS course. Our goal is to
create an exam to measure understanding of fundamental
computing concepts, independent of programming language,
that would not be overly biased by any particular pedagog-
ical paradigm.

3. METHOD FOR DEVELOPING A VALI-
DATED CS1 ASSESSMENT

To build our assessment instrument we are adapting the
standard educational test development guidelines [2]. In or-
der to achieve language independence, we have augmented
these procedures with an additional step. The steps in the
resulting process are outlined below:

1. Define Conceptual Content

2. Expert Review of Test Specification

3. Build Test Bank of Questions

4. Verify Language Independence

5. Pilot Questions

6. Establish Validity

7. Establish Reliability

The first step in test development is to establish the pur-
pose and definition of the test—what is to be measured and
what the scores mean. The test specification includes the
definition of the conceptual content, or constructs, that are
to be measured, the format of the questions, and the scor-
ing procedures. The test specification should be reviewed by
a panel of experts to provide content validity evidence and
ensure that all constructs are adequately represented and
extraneous constructs are not included.

After the test specification has been developed and veri-
fied, a test bank of questions should be developed to cover
all constructs identified in the specification. To achieve lan-
guage independence for a CS1 exam, we utilize a verbose
psuedocode as the exam programming language. Piloting
of the questions in both pseudocode and the language of
instruction, for example Java or Python, then takes place.
This testing is required to ensure students are able to ap-
propriately transfer understanding from their programming
language of instruction to pseudocode. Pilot tests also ex-
amine the suitability of the questions, allowing necessary
revisions to be made prior to the selection of the final can-
didate questions.

The last stages of test development are empirical studies of
individual responses to establish validity and reliability. Va-
lidity testing ensures that the test is measuring the intended
constructs, and reliability testing verifies that the results are
consistent over repeated tests, and thus are dependable.

98

The following sections of the paper present our results
to date. We have completed work defining the conceptual
content of the assessment and have built the test bank of
questions.

4. DEFINING THE CONTENT
Given our goal of developing a widely applicable CS1 as-

sessment, our strategy for defining content was to identify
concepts that a wide variety of introductory courses and
approaches had in common. We chose textbooks as the ex-
ternal artifact representing the content of a course because
other measures such as course syllabi or assignments are not
feasible to analyze on a large scale. We began by conduct-
ing a document analysis of the table of contents of the two
most widely adopted CS1 textbooks from each of the major
publishers of computing textbooks (Addison Wesley, Thom-
son/Course Technology, Franklin Beedle & Associates, Mc-
Graw Hill, Prentice Hall, Wiley & Sons)—12 books in total
[3, 6, 11, 12, 13, 17, 18, 20, 22, 23, 25, 26].

Topics listed in the table of contents were aggregated into
a list, noting which concepts were covered by which texts.
The goal of this bottom-up approach was to identify the set
of topics most commonly covered in CS1 courses, as spec-
ified by textbooks faculty chose to adopt. However with
the increasing breadth in introductory textbooks, the topic
list quickly became unwieldy with over 400 concepts, rang-
ing from low level concepts such as byte code and com-
puter architecture to advanced topics traditionally covered
later in the curriculum (e.g., relational databases and multi-
threaded processes).

We used the framework of the Computer Science volume of
Computing Curricula 2001 [1] to revise our initial list of top-
ics. CC2001 provides guidelines for the conceptual content
to be covered in the introductory year sequence of computing
courses. By providing a variety of models and pedagogical
approaches to achieve these goals, the guidelines do not des-
ignate any concepts specific to the first or second CS course.
Although a list of CS1 topics is not specified, the framework
did enable revisions by providing a high level organization
for the concepts identified in the first phase of analysis. We
chose to eliminate any concepts outside of the scope of the
introductory sequence. We further narrowed the intended
scope of our assessment by concentrating on the identified
concepts that were in the programming fundamentals (PF1,
PF3, and PF4) and object-oriented programming (PL6) ar-
eas while removing categories such as discrete structures,
algorithms and complexity, and software engineering.

Unfortunately, the resulting list of 188 concepts was still
too large to be practical for test development. We further
refined the list by analyzing the content of canonical texts
representing each of the common introductory approaches
(objects-first [13, 6], functional-first [7], and imperative-first
[26]). A concept was included in this step of revision if it
was covered by all of the texts or excluded by only one of
the canonical texts. The list of fundamental computing con-
cepts common across languages and pedagogical approaches
is listed in Table 1.

The topics in Table 1 have been refined to a scope that fits
within the material traditionally covered in CS1. However it
is impractical to sufficiently evaluate student knowledge of
each of these 29 concepts in a single test setting. We there-
fore performed additional analysis and synthesis with the
aim of generating a small handful of constructs that were

Table 1: Common Fundamental CS1 Concepts

Concept Lewis
&

Loftus

Deitel
&

Deitel

Felleisen
et al

Zelle

Variable x x x x

Simple I/O x x x

Recursion x x x x

EXPRESSIONS

Mathematical
Operators

x x x x

Relational
Operators

x x x x

Logical
Operators

x x x x

Assignment x x x x

CONTROL STRUCTURES

Selection
Statement
(if/else)

x x x

Definite Loop
(for)

x x x x

Indefinite
Loop (while)

x x x

Nested Loops x x x

FUNCTIONS/METHODS

Definition x x x x

Parameters -
Pass by Value

x x x x

Return Values x x x x

DATA TYPES & STRUCTURES

Primitive
Data Types

x x x x

Integer x x x x

Floating
Point

x x x

Boolean x x x x

String x x x x

Array x x x x

Tree x x x

OBJECT-ORIENTED PROGRAMMING

Object/Class x x x x

Constructor x x x x

Instance/Local
Variables

x x x x

Accessor
Methods

x x x

Mutators
Methods

x x x

Encapsulation x x x x

Inheritance x x x

Polymorphism x x x

99

amenable to testing. A number of basic concepts were com-
bined into one fundamentals construct that includes all of
the basic semantic topics (e.g., variables, assignment, mathe-
matical expressions). The primitive data type concepts (e.g.,
integer, boolean) provide useful information for the kinds of
data commonly available for manipulation in test questions,
but we chose not to dedicate separate questions to these top-
ics. Procedures for processing simple input and output are
often very language specific, so this topic was removed over
concern for generalizability across languages and paradigms.
Finally, in order to avoid biasing a particular paradigm and
to limit the scope of constructs to those most fundamental
and widely applicable across any introductory approach, we
chose to limit the object construct to the basics of class def-
initions and method calls. The final list of constructs which
serve as the basis of the test specification are as follows:

• Fundamentals (variables, assignment, etc.)

• Logical Operators

• Selection Statement (if/else)

• Definite Loops (for)

• Indefinite Loops (while)

• Arrays

• Function/method parameters

• Function/method return values

• Recursion

• Object-oriented Basics (class definition, method calls)

5. TEST SPECIFICATION AND QUESTION
DEVELOPMENT

A test specification is a detailed description of the instru-
ment that specifies the percentage of questions dedicated to
each construct, the question format, and the scoring proce-
dures [2]. We have chosen to weight each construct equally
with 10% of the questions devoted to each topic and have
elected to use a multiple-choice question format. MCQs,
when constructed carefully, can provide the same informa-
tion about conceptual knowledge as short answer or open
response questions with significant advantages in test ad-
ministration and scoring [9]. We have also specified that
test scores should be criterion-referenced, interpreted based
on individual performance and not rated relative to the per-
formance of peers.

A group of experts in CS education was empaneled to re-
view our test specification. Specifically they provided feed-
back on the list of constructs to be tested, the standardized
multiple-choice question format, and the scoring method to
be used. An initial draft of sample questions was provided
to help concretize the testing constructs. Based on their
feedback, the operational definitions for the constructs were
finalized and question development began.

In order to evaluate different kinds of conceptual under-
standing, three different types of questions about each con-
struct were developed. Definitional questions explore the
student’s general understanding of a construct. Tracing
questions examine a student’s ability to predict execution of

code using a particular concept (e.g. the value of a variable
after loop completes execution). Code completion questions
are fill-in-the blank type questions to evaluate a student’s
ability to write code. For each construct, we built multiple
versions of each type of question for the test bank1.

6. FUTURE WORK AND CONCLUSION
At this stage we have specified the content of our CS1

assessment and the nature of the test’s format. We have also
developed the bank of questions which cover the common
CS1 concepts identified through the analysis of introductory
texts. Our next steps in the process are to conduct pilot
studies which will allow us to gather evidence for language
independence and construct validity. We briefly outline the
plans for these studies below.

To achieve the goal of having a language independent CS1
assessment that can be widely adopted, we have an addi-
tional burden of investigating the effect of pseudocode as
the examination language. We will conduct this inquiry in
two stages. The first will compare students’ answers to open-
ended versions of the questions written in the programming
language of their CS1 instruction. Student answer patterns
between classes of languages and paradigms will then be
compared for similarities and differences in their responses.
Common student answers, particularly the incorrect ones,
suggest common errors regardless of programming language,
and they will be used to generate and verify distractors (i.e.,
wrong answers) for the multiple-choice questions on the as-
sessment.

The second stage in piloting our assessment will be com-
paring student performance on analogous versions of the as-
sessment, one written in pseudocode and one written in their
CS1 programming language. Ideally, with a brief introduc-
tion to the pseudocode, students should be able to transfer
their knowledge of computing concepts to the syntax of the
pseudocode and perform comparably on the two versions of
the assessment.

Empirical analysis of item responses gathered during the
pilot phases may suggest revisions. Final candidate ques-
tions for the instrument will be selected after any necessary
revisions are made. This candidate instrument will then be
deployed at multiple institutions for full-scale validity and
reliability testing. Construct validity evidence will be gath-
ered by correlating assessment scores with other measures
of CS1 learning, such as final exam scores. Additional data
will be collected through think aloud protocols to ensure
students interpret questions as intended. Reliability of the
instrument will be measured using split-half testing. The
instrument will be divided into two equivalent tests, admin-
istered at 1–2 week intervals, and correlations between the
two scores computed.

The method presented above outlines essential steps to-
wards achieving the goal of producing a validated and reli-
able assessment instrument for introductory computing con-
cepts. The creation of such assessment tools, similar to those
available in other STEM disciplines, is an important en-
deavor for our developing field. As Moss, et al state “assess-
ment practices do far more than provide information, they

1Unfortunately, until we have established the validity of the
assessment instrument, exam questions must remain private
and cannot be published. This prevents potentially biasing
participants involved in the validation studies.

100

also shape people’s understanding about what is important
to learn, what learning is, and who learners are” [21, p. 111].
No one assessment could, or should, sufficiently define the
scope of computing education, so partnerships with practi-
tioners and researchers encouraging the development of new
validated assessment instruments are vital for our discipline.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant Nos. 0512213 and
0634629. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

8. REFERENCES
[1] Computing curricula 2001. Journal on Educational

Resources in Computing, 1(3es):1–240, 2001.

[2] American Educational Research Association,
American Psychological Association, and National
Council on Measurement in Education. Standards for
educational and psychological testing. American
Educational Research Association, Washington, DC,
1999.

[3] J. Cohoon and J. Davidson. Java 5.0 Program Design.
McGraw Hill, Boston, MA, 2006.

[4] C. H. Crouch and E. Mazur. Peer instruction: Ten
years of experience and results. American Journal of
Physics, 69(9):970–977, September 2001.

[5] A. M. Decker. How Students Measure Up: An
Assessment Instrument for Introductory Computer
Science. PhD thesis, University at Buffalo (SUNY),
Buffalo, NY, 2007.

[6] H. Deitel and P. Deitel. C++: How to Program.
Prentice Hall, Upper Saddle River, NJ, 5th edition,
2005.

[7] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. How to Design Programs: An
Introduction to Programming and Computing. MIT
Press, Cambridge, MA, 2001.

[8] K. Goldman, P. Gross, C. Heeren, G. Herman,
L. Kaczmarczyk, M. C. Loui, and C. Zilles. Identifying
important and difficult concepts in introductory
computing courses using a Delphi process. In SIGCSE
’08: Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education, pages
256–260, 2008.

[9] T. M. Haladyna. Developing and validating
multiple-choice test items. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, 3rd edition, 2004.

[10] D. Hestenes, M. Wells, and G. Swackhamer. Force
concept inventory. The Physics Teacher, 30:141–158,
March 1992.

[11] C. Horstmann. Java Concepts. John Wiley and Sons,
Hoboken, NJ, 4th edition, 2005.

[12] C. Horstmann. Big Java. John Wiley and Sons,
Hoboken, NJ, 2nd edition, 2006.

[13] J. Lewis and W. Loftus. Java Software Solutions (Java
5.0 version): Foundations of Program Design. Addison
Wesley, Boston, MA, 4th edition, 2005.

[14] J. C. Libarkin and S. Anderson. Assessment of
learning in entry-level geoscience courses: Results
from the geoscience concept inventory. Journal of
Geoscience Education, 53:394–401, 2005.

[15] E. F. Lindquist, editor. Educational measurement.
American Council on Education, Washington, D.C.,
1951.

[16] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone,
J. Hamer, M. Lindholm, R. McCartney, J. E.
Moström, K. Sanders, O. Seppälä, B. Simon, and
L. Thomas. A multi-national study of reading and
tracing skills in novice programmers. In ITiCSE-WGR
’04: Working group reports from ITiCSE on
Innovation and technology in computer science
education, pages 119–150, 2004.

[17] D. S. Malik. C++ Programming: From Problem
Analysis to Program Design. Thompson Course
Technology, Boston, MA, 2nd edition, 2004.

[18] D. S. Malik. Java Programming: From Problem
Analysis to Program Design. Thompson Course
Technology, Boston, MA, 2nd edition, 2006.

[19] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,
I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of
programming skills of first-year CS students. SIGCSE
Bulletin, 33(4):125–180, 2001.

[20] R. Mercer. Computing Fundamentals with Java.
Franklin Beedle and Associates, Wilsonville, OR, 2002.

[21] P. A. Moss, B. J. Girard, and L. C. Haniford. Validity
in Educational Assessment. Review of Research in
Education, 30(1):109–162, 2006.

[22] W. Savitch. Java: An Introduction to Problem Solving
and Programming. Prentice Hall, Upper Saddle River,
NJ, 4th edition edition, 2005.

[23] W. Savitch. Problem Solving with C++: The Object of
Programming. Addison Wesley, Boston, MA, 5th
edition edition, 2005.

[24] A. E. Tew, W. M. McCracken, and M. Guzdial.
Impact of alternative introductory courses on
programming concept understanding. In ICER ’05:
Proceedings of the 2005 International Workshop on
Computing Education Research, pages 25–35, 2005.

[25] C. T. Wu. Intro to Object Oriented Programming using
Java. McGraw Hill, Boston, MA, 4th edition, 2006.

[26] J. M. Zelle. Python Programming: An Introduction to
Computer Science. Franklin Beedle, Wilsonville, OR,
2004.

101

